Building agents with adaptive behavior in cooperative tasks stands as a paramount goal in the realm of multi-agent systems. Current approaches to developing cooperative agents rely primarily on learning-based methods, whose policy generalization depends heavily on the diversity of teammates they interact with during the training phase. Such reliance, however, constrains the agents’ capacity for strategic adaptation when cooperating with unfamiliar teammates, which becomes a significant challenge in zero-shot coordination scenarios. To address this challenge, we propose ProAgent, a novel framework that harnesses large language models (LLMs) to create proactive agents capable of dynamically adapting their behavior to enhance cooperation with team mates. ProAgent can analyze the present state, and infer the intentions of teammates from observations. It then updates its beliefs in alignment with the teammates’ subsequent actual behaviors. Moreover, ProAgent exhibits a high degree of modularity and interpretability, making it easily integrated into various of coordination scenarios. Experimental evaluations conducted within the Overcooked-AI environment unveil the remarkable performance superiority of ProAgent, outperforming five methods based on self-play and population-based training when cooperating with AI agents. Furthermore, in partnered with human proxy models, its performance exhibits an average improvement exceeding 10% compared to the current state-of-the-art method. For more information about our project, please visit https://pku-proagent. github.io.
Ceyao Zhang, Kaijie Yang, Siyi Hu, Zihao Wang, Guanghe Li, Yihang Sun, Cheng Zhang, Zhaowei Zhang, Anji Liu, Song-Chun Zhu, Xiaojun Chang, Junge Zhang, Feng Yin, Yitao Liang, Yaodong Yang