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Abstract— Animatronic robots hold the promise of enabling
natural human-robot interaction through lifelike facial expres-
sions. However, generating realistic, speech-synchronized robot
expressions poses significant challenges due to the complexities
of facial biomechanics and the need for responsive motion syn-
thesis. This paper introduces a novel, skinning-centric approach
to drive animatronic robot facial expressions from speech input.
At its core, the proposed approach employs linear blend skin-
ning (LBS) as a unifying representation, guiding innovations
in both embodiment design and motion synthesis. LBS informs
the actuation topology, facilitates human expression retargeting,
and enables efficient speech-driven facial motion generation.
This approach demonstrates the capability to produce highly
realistic facial expressions on an animatronic face in real-time at
over 4000 fps on a single Nvidia RTX 4090, significantly advanc-
ing robots’ ability to replicate nuanced human expressions for
natural interaction. To foster further research and development
in this field, the code has been made publicly available at:
https://github.com/library87/OpenRoboExp.

I. INTRODUCTION

Accurately replicating human facial expressions is crucial
for natural human-robot interaction [1–3]. Recent studies
have incorporated human motion transfer techniques for
animatronic faces [4–8], primarily focusing on mimicking
observed human expressions through leader-follower map-
ping. However, to achieve genuine emotional resonance with
humans, social robots require speech-synchronized, lifelike
expressions [9, 10]. This necessitates a shift towards speech-
driven approaches for generating dynamic and contextu-
ally appropriate facial expressions. Such advancements have
significant implications for various applications, such as
entertainment, education and healthcare, where natural and
expressive human-robot interaction is paramount.

This paper introduces the first principled approach for
creating an animatronic robot face capable of generating
expressions directly from speech, marking a significant ad-
vancement in creating dynamically expressive robot faces
and enhancing the potential for natural human-robot inter-
action. Fig. 1 showcases the realism and diversity of the
generated robot facial expressions, synchronized with the
corresponding speech input over time.

Generating seamless, real-time animatronic facial expres-
sions from speech presents two main challenges: (1) repli-
cating the intricate biomechanics of human facial muscula-
ture [11–18], and (2) generating nuanced human expressions
through responsive algorithms based on advanced imitation
learning [4–8]. Overcoming these challenges necessitates a
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Fig. 1: Dynamic animatronic robot facial expressions generated
from speech. The figure shows the system’s capability to produce
diverse and lifelike facial expressions in real-time, synchronized
with the corresponding audio speech input. The waveform at the
top represents the audio input, while the series of images below
showcase the robot’s facial responses at different time points.

comprehensive approach that integrates embodiment design
and motion synthesis.

Conventional muscle-centric embodiment design ap-
proaches attempt to replicate human anatomy, but face sig-
nificant engineering obstacles. These include the complexity
of mimicking the multitude of facial muscles, their inter-
connections, and their subtle interactions. Additionally, the
miniaturization of actuators to fit within the confined space
of a robot face while maintaining the required force and
precision presents considerable challenges. The key insight
of this research is that achieving realistic facial skinning
motions, rather than replicating internal muscle movements,
is the primary objective. Consequently, this paper proposes
a novel skinning-centric embodiment design approach.

Current methods animate robot facial skinning through
3D landmark alignment between humans and robots [4, 6].
However, this sparse landmark approach has inherent lim-
itations: (1) insufficient capture of expression intricacies,
resulting in oversimplification; (2) coupling of facial shapes
and expressions, leading to inconsistencies from varying
shapes; (3) topological differences hindering viable landmark
motion transfer, limiting adaptability; and (4) confinement of
edits to specific landmarks, restricting semantic adjustability.
These limitations underscore the need for a 3D landmark-free
skinning representation.

To address these challenges, this paper proposes a prin-
cipled approach leveraging linear blend skinning (LBS) for
both embodiment design and motion synthesis. LBS enables
efficient and controllable facial expressions by linearly com-
bining predefined shape variations (blendshapes) from a neu-
tral shape. For embodiment, LBS guides a skinning-oriented
actuation topology optimized for blend skinning objectives
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while referencing facial anatomy. For synthesis, LBS facil-
itates motion retargeting from human demonstrations into
robot skinning references. A speech-driven model is further
proposed that generates highly realistic, lip-synchronized
LBS-based skinning motions in real-time through imitation
learning. This approach significantly advances upon recent
works by offering enhanced expressiveness through continu-
ous dense deformation, improved consistency and adaptabil-
ity to different facial topologies, semantic editability without
need to retrain for different robot faces, and efficient real-
time performance crucial for natural human-robot interaction.

In summary, this paper presents the first principled ap-
proach for creating an animatronic robot face capable of
generating expressions from speech. The proposed skinning-
centric approach for embodiment design and motion syn-
thesis significantly advances the state-of-the-art in creating
dynamically expressive robot faces for natural interaction.

The rest of the paper is organized as follows: Section
II reviews related works in animatronic robot faces and
facial expression synthesis. Section III introduces the pro-
posed LBS-based approach. Section IV details the skinning-
oriented robot development process. Section V elaborates on
the skinning motion imitation learning method. Section VI
presents experimental results, and Section VII concludes with
a discussion of implications and future research directions.

II. RELATED WORKS

Animatronic Robot Face: The evolution of animatronic
robot faces can be categorized into two main phases:
(1) early approaches that prioritized hardware design with
pre-programmed expressions, and (2) recent studies that
incorporate human motion transfer techniques. Pioneering
works [11–16] relied heavily on pre-programmed hardware
and expressions, which severely limited their ability to
generalize beyond a fixed set of postures. In recent years, re-
searchers have made significant strides by integrating human
motion transfer techniques, such as active appearance mod-
els [4], genetic algorithms [5], visual mimicry learning [6],
Bayesian optimization [7], and MAP-Elites algorithms [8].
While these approaches have enhanced the flexibility of ani-
matronic robot faces, they remain fundamentally constrained
by their reliance on mimicking observed human expressions
through a leader-follower mapping paradigm. The creation
of real-time facial expressions directly from speech on ani-
matronic platforms remains an unexplored frontier, impeding
natural human-robot interaction.

Facial Expression Synthesis: In parallel, speech-driven
facial expression synthesis has seen substantial advancements
in generating photo-realistic talking head videos [19–22].
These approaches map speech to target video domains,
yielding impressive visual results. More pertinent to this
work are methods for speech-driven 3D facial animation that
control full vertex-level facial skinning [23–27]. However,
while these methods excel at creating realistic virtual ren-
ditions, they do not address the distinct challenges inherent
in physical robots, such as actuation limitations, real-time
control requirements, and physical constraints. Their direct
applicability to animatronic platforms remains limited.

This work distinguishes itself by introducing the first
principled approach for generating robot facial expressions
directly from speech on real animatronic platforms. It bridges
the gap between speech input and physical actuation, a
critical step towards creating dynamically expressive robot
faces capable of natural, speech-synchronized interactions.
By addressing the unique challenges of translating speech
into physical facial movements, this research opens new
avenues for enhancing the expressiveness and naturalness of
human-robot interaction.

III. PROPOSED APPROACH

A. Approach Overview

Fig. 2 presents the proposed approach for creating a
speech-driven animatronic robot face using LBS. It com-
prises three key components: First, skinning-oriented robot
development designs and constructs the animatronic platform
paired with a kinematics simulator based on the target
skinning appearance. The LBS motion space is designed
following blendshape design protocols [28] (predefined bases
of facial expressions) to enable seamless motion transfer. The
actuation topology and simulator are developed concurrently
to match this motion space, while the robot face is con-
structed considering physical constraints. Second, skinning
motion imitation learning involves learning an LBS-based
model from 3D human demonstrations to generate robot
facial motions. Human blendshapes are carefully designed
to align semantically with the robot blendshapes, ensuring
consistent and expressive motion transfer. The learned model
takes speech as input and outputs skinning motions as refer-
ence signals. Finally, during inference, speech-driven robot
orchestration generates expressions on the animatronic face
using the learned model and the developed simulator. Inverse
kinematics is solved online to compute actuator commands
from the generated skinning motions, enabling real-time,
speech-driven expressions.

B. LBS Representation

The proposed approach leverages LBS, a widely-used
technique in computer graphics for deforming 3D meshes.
LBS represents a mesh as a weighted combination of a
neutral shape and a set of predefined shape variations, called
blendshapes. It offers key advantages: First, it compactly
encodes intricate expressions into a small set of blend-
shape coefficients, facilitating human-like motions with min-
imal data. Second, as an expression-dependent but subject-
invariant representation, LBS enables consistent performance
across different faces by generating the same blendshape
coefficients for the same expressions. This decoupling of
embodiment design from motion synthesis allows the LBS-
based motion synthesis model to generalize across diverse
embodiments and enables semantic editability before retar-
geting without retraining.

Crucially, the approach relies on semantically aligning the
design of human and robot blendshapes to enable motion
transfer. By carefully designing these aligned blendshapes
to represent the same set of facial expressions (e.g., eye
blink, mouth smile), it ensures that the same blendshape



Fig. 2: The proposed approach for creating a speech-driven animatronic robot face using LBS. The approach comprises three major
components: (1) skinning-oriented robot development designs and constructs the animatronic face paired with a kinematics simulator
based on the target skinning appearance, (2) skinning motion imitation learning involves training an LBS-based model from 3D human
demonstrations to generate facial expressions from speech input, and (3) speech-driven robot orchestration generates animatronic facial
expressions during inference by utilizing the developed platform, simulator, and learned model. The diagram highlights key development
steps, outputs, and inference processes, demonstrating the end-to-end workflow from concept to final animatable robot face.

coefficients, when applied to both human and robot, produce
semantically corresponding expressions, even with differing
underlying facial structures.

The robot facial skinning function TRpθq :Rθ ÞÑR3U

represented using LBS is

TRpθq “TR `BR
E pθ; ERq, (1)

where TR PR3U is the neutral (zero-pose) robot face with
U vertices, and BR

E pθ; ERq :Rθ ÞÑR3U is the expression
skinning function with B robot blendshape bases ER and
coefficients θ. The expression skinning function BR

E linearly
combines the robot blendshape bases ER using the coeffi-
cients θ to generate the final facial deformation, allowing
efficient representation and control of diverse expressions by
adjusting the blendshape coefficients.

To enable motion transfer, human blendshapes EH are
designed to align semantically with ER. The human mesh
topology matches that of the captured 3D human demonstra-
tions, with the mean face shape of demonstration subjects
serving as the neutral human face TH . The human facial
skinning function THpθq :Rθ ÞÑR3V is

THpθq “TH `BH
E pθ; EHq, (2)

where V is the number of human face vertices. By transfer-
ring θ, human motions are effectively mapped to the robot.

For the blendshape design, the Apple ARKit standard
(excluding tongue-out) is adopted for its semantic meaning-
fulness and comprehensiveness, enhancing practical interop-
erability by leveraging existing frameworks.

IV. SKINNING-ORIENTED ROBOT DEVELOPMENT

A. LBS-Oriented Kinematics Design

The primary objective in designing the facial kinematics
system is to reproduce the target LBS-based motion space,
prioritizing functional equivalence over anatomical replica-
tion. A baby-like face serves as the target animatronic robot
appearance, demonstrating the proposed skinning-centric ap-
proach’s applicability to various facial morphologies.

To facilitate the design process, a kinematics simulator
with adjustable topology is developed in Blender, enabling
rapid computation of LBS and muscular motion spaces
for iterative optimization. The design focuses on allocating
skinning control points, each with bounded 6 degrees of
freedom (B6DOF) for position and orientation, balancing
motion flexibility and actuator complexity.

As depicted in Fig. 3, the optimized kinematics design
contains a total of 21 control points: 4 for eyebrows, 4 for
eyelids, 2 for eyeballs, 2 for the nose, 2 for cheeks, 6 for
the mouth, and 1 for the jaw. The color-coded points show
the control point locations, and lines indicate the B6DOF
motion bounds. This design strikes a balance between motion
flexibility and system complexity.

B. Electro-Mechanical Design and Development

Mechanical Design: The mechanical design aims to phys-
ically realize the facial muscular motion space defined by the
control points while accounting for physical constraints. A
tendon-driven actuation approach, inspired by human facial
anatomy, enables the remote location of actuators, providing
power under spatial limitations.

Specifically, 24 actuators drive the eyes, eyebrows, nose,
cheeks, and mouth, using tendons to actuate control points.



Fig. 3: The proposed skinning-oriented robot design. The figure comprises two primary components: (1) LBS-oriented kinematics
design, which showcases the facial mesh model with strategically placed control points for various facial features to achieve actuation
topology for the facial muscular system that matches the designed LBS motion space and references facial anatomy, and (2) electro-
mechanical design and development accounting for physical constraints of the embodiment, including key mechanical components of the
skin, skeleton and muscular system, as well as the electrical control system. This comprehensive view demonstrates how the theoretical
LBS model is translated into a functional, physically embodied animatronic face.

Each actuator pulls or pushes a 1.5mm steel cable through
a 1.5mm inner diameter Teflon conduit, enabling precise
displacement control of rocker arms. Additionally, four ac-
tuators and a ball-joint linkage control the jaw module for
articulation and 3D translation. The neck module, with three
actuators, enables head roll, pitch, and yaw.

The skeletal and muscular system design, shown in Fig. 3,
carefully constrains the control points’ B6DOF motions to
match the target LBS-based motion space. This tendon-
driven approach allows for complex, coordinated movements
that closely mimic the desired facial expressions. A silicone
mask, iteratively designed with considerations for shape,
hardness, and thickness, serves as the facial skin. The mask’s
soft silicone provides exceptional flexibility, enabling the
robot to achieve desired motions with high fidelity, effec-
tively translating the LBS-based design into physical form.

Electrical Design: The electrical design aims to enable
real-time skinning motion tracking by the animatronic face.
To achieve responsive 25Hz control for robot orchestration,
the system must actuate each control point across its full
motion range within 40ms.

To meet these stringent real-time requirements, specific
components are carefully selected based on their capabilities
and performance characteristics. The ESP32 microcontroller
is chosen for its efficient on-chip signal processing capa-
bilities, enabling real-time control. Two PCA9685 boards
provide interfaces for driving the total 31 servo motors
required for articulation. Three high-torque DS3115 servos
are selected for the neck module due to their ability to enable
rapid rotations under the payload of the robot head, while
28 lower-torque LFD-01M servos optimize cost while still
providing adequate speed for the finer facial motions. With a
0.12sec{60˝ at 4.8V, the servos exceed the 40ms actuation
constraints when powered by a 5V lithium battery.

The high-level system uses a GPU-accelerated PC to
generate motion references from the learned model and
run the simulator to solve inverse kinematics, generating
servo commands for the ESP32 microcontroller. This setup
ensures that the complex LBS-based motions are accurately
translated into physical movements in real-time.

V. SKINNING MOTION IMITATION LEARNING

The goal is to learn a function fp¨q that maps input speech
s to blendshape coefficients θ, i.e. fpsq Ñθ, where θ PRB

and B is the number of blendshapes. The function fp¨q

is learned from a dataset D containing paired examples of
speech and corresponding 3D human skinning motions. The
learned function should generalize to unseen speech inputs
and generate realistic, expressive facial motions.

Fig. 4 presents the proposed facial skinning motion imi-
tation learning method, consisting of two key branches: (1)
The training branch develops a model to generate LBS-based
facial skinning motions, represented by blendshape coeffi-
cients, from input speech. This model is learned from 3D
human demonstrations showing linkages between speech and
facial skinning motions. (2) The inference branch leverages
the robot LBS decoder to transform predicted blendshape
coefficients into corresponding skinning motion reference
signals. These signals further drive through the robot kine-
matics simulator to produce lifelike facial articulation.

A. Model Architecture

The model architecture fp¨q takes raw speech waveforms
s and generates blendshape coefficients θ representing skin-
ning motions. It contains: (i) a frame-level speech encoder
extracting embeddings via a transformer-based phoneme
logit extractor and temporal fusion module, (ii) a speaking
style encoder embedding conditioning vectors, and (iii) an



Fig. 4: The proposed speech-driven facial skinning motion imitation learning method. The model architecture (blue section) comprises
three key components: (1) a frame-level speech encoder that processes audio input and generates phoneme logits, (2) a speaking style
encoder that captures individual speaking styles, and (3) an LBS encoder that generates blendshape coefficients. During training (red
section), the model learns to imitate human facial skinning motions by minimizing the difference between generated and target expressions.
In the inference branch (orange section), the trained model generates blendshape coefficients for the robot LBS decoder, producing robot-
specific facial skinning motions as reference signals for the downstream kinematics simulator.

LBS encoder projecting conditioned speech embeddings to
blendshape coefficients in the range r0, 1s. In this con-
text, speaking style refers to the characteristic facial mo-
tion patterns exhibited by different speakers during speech
production. These patterns encompass individual variations
in articulation, facial muscle engagement, and expressive
tendencies, which contribute to the unique visual signature
of each speaker’s facial movements during speech.

Specifically, the phoneme extractor follows the state-of-
the-art transformer-based self-supervised pre-trained speech
model, Wav2vec2 [29], finetuned on the CommonVoice
dataset [30] with 53 languages and 392 phoneme classes to
enhance cross-language generalization. It outputs a phoneme
logits sequence at 49Hz followed by resampling to 25Hz
to match the robot orchestration rate. The temporal fusion
module progressively fuses K-step neighborhood logits over
a sliding window into frame-level speech embeddings, com-
prising M “ log2 K stacked Resnet blocks with a kernel size
of 3, stride of 2, and H filters. The N -way speaking style
vector accounts for cross-subject variations and is embedded
with a fully-connected (FC) layer having H hidden units.
This component is crucial for capturing and reproducing
individual speaking styles, enhancing the model’s ability to
generate diverse and personalized facial expressions. The
LBS encoder takes the late-fused conditioned speech em-
bedding as input and outputs blendshape coefficients with
two successive layers: an FC layer having 2H hidden units
with a ReLU activation, and an FC layer with H hidden units
followed by a Sigmoid activation.

B. Training
The human LBS decoder transforms blendshape coeffi-

cients into vertex displacements. It is an FC layer with zero

biases and a linear activation. Its weights are set and frozen
using designed blendshapes over vertex displacements.

The loss function compares predicted and ground-truth
vertices, regressing positions over the entire face. An ad-
ditional weighted mouth term encourages improved lip syn-
chronization, as mouth shapes strongly correlate with speech.
For each predicted frame-level vertex, ŷ“ tŷiuiPr0,V s, the
model is trained by minimizing the loss L compared to the
ground truth vertex, y“ tyiuiPr0,V s. The loss is

L“

V
ÿ

i“1

pyi ´ ŷiq
2

`wm

Vm
ÿ

j“1

pyj ´ ŷjq
2
, (3)

where Vm is the number of vertices in the masked mouth
region and wm is the mouth weight.

C. Inference

The robot LBS decoder, a crucial component in the
inference branch as illustrated in Fig. 4, converts gener-
ated blendshape coefficients into skinning motions. Utilizing
pre-designed robot blendshapes, this decoder operates with
fixed weights established during the facial motion space
design phase. While structurally analogous to the human
LBS decoder, its weights are determined by applying de-
signed robot’s blendshapes to vertex displacements. The non-
trainable nature of this decoder ensures consistent interpre-
tation of blendshape coefficients throughout inference.

During the inference process, the trained model first gener-
ates a sequence of blendshape coefficients from input speech.
This sequence undergoes temporal smoothing via a low-
pass Butterworth filter to enhance stability. The robot LBS
decoder then processes this filtered sequence, computing the
skinning motion that serves as a reference signal for the



Fig. 5: Motion Space Validation. Actuated blendshape error for different facial regions (left figure): Color-coded skinning landmarks
represent different facial regions for evaluation. The 3D face model shows color-coded landmarks for different facial areas. Error
distributions between simulated and physically actuated blendshapes are visualized using violin plots, box plots, and scattered points.
Each point represents a single blendshape, evaluated using region-specific landmarks. Median errors (in mm) are provided for each facial
region, ranging from 1.76mm (nose) to 8.63mm (jaw). Qualitative comparison (right figure): Visual comparison of eight simulated
(gray mesh) versus actuated (realistic skin) blendshapes are shown. Blendshapes (1)-(6) demonstrate high accuracy, while (7) mouth close
and (8) jaw open highlight limitations in the current design, exhibiting maximum errors for their respective regions.

downstream kinematics simulator. This approach maintains
a consistent mapping between blendshape coefficients and
resulting skinning motions, preserving the integrity of the
designed facial expression space throughout inference.

D. Implementation Details
The VOCASET dataset [24], comprising audio-3D scan

pairs of English utterances, is utilized for training and testing.
This dataset was selected due to its high-quality 3D facial
motion captures, diverse subjects, and phonetically balanced
utterances, making it suitable for learning speech-driven
facial expressions. VOCASET contains 255 unique sentences
shared among 12 subjects, with 480 facial motion sequences
captured at 60Hz, each lasting 3 to 4 seconds. The 3D face
mesh consists of 5023 vertices.

For this study, VOCASET motions are resampled to 25Hz
to align with the robot orchestration rate. Subject-agnostic
sequences are derived by subtracting zero-pose subject-
specific face meshes from vertex sequences and adding them
to the designed neutral (zero-pose) human face, TH . The
data is split 80{10{10 into train/validation/test sets, with
two subjects reserved for testing generalizability. While VO-
CASET provides a foundation for initial model validation,
the limited subject count may constrain generalization. This
study serves as a proof-of-concept for the proposed approach,
with exploration of larger, diverse datasets to enhance model
generalizability being a potential area for future research.

The model is implemented in PyTorch with the following
parameters: sliding window size K “ 8 (320ms), hidden
dimension H “ 64, and robot specifications of U “ 4792
vertices and B “ 51 blendshapes. Training utilizes the Adam
optimizer with β1 “ 0.9, β2 “ 0.99, learning rate 1e´4, and
weight decay 1e´4. The motion weight wm is set to 1.
Dropout layers with a rate of 0.1 are inserted after each
fully connected (FC) layer, except for the one with Sigmoid
activation. The model is trained for 200 epochs on an
NVIDIA 4090 GPU, taking approximately 3sec{epoch. The

Wav2vec2-XLSR53 component remains fixed during train-
ing. For inference, a 7Hz 5th-order low-pass Butterworth fil-
ter is applied to smooth the output. The model demonstrates
high-speed performance, generating blendshape coefficients
from speech at a rate exceeding 4000Hz on GPU.

VI. EXPERIMENTS

A. Robot Development Experiments

The experiments in this subsection aim to validate the
proposed animatronic face in achieving the designed motion
space and dynamic tracking performance. These experiments
provide crucial evidence for the effectiveness of the skinning-
oriented design approach and electro-mechanical design in
enabling realistic and responsive facial expressions.

Motion Space Validation: This experiment quantitatively
validates the physical realization of the designed LBS mo-
tion space defined by the robot blendshapes. Achieving the
comprehensive set of blendshapes is essential for enabling
expressive facial articulation. A VICON motion capture sys-
tem is employed to track the physical skinning deformations.
Reflective markers are attached to key control points and
auxiliary skinning locations, corresponding to landmarks in
the simulator. By individually actuating each blendshape and
comparing the VICON marker positions with the simulated
landmarks, the discrepancies can be measured using the
mean squared error (MSE).

The results, presented in Fig. 5, demonstrate highly ac-
curate realization of the designed motion space. Across
various facial regions, the MSE errors consistently remain
at the millimeter scale. For instance, the mouth blendshapes
exhibit a median error of 3.76mm, while the eye blendshapes
show a median error of 2.41mm. These low errors confirm
the successful translation of the designed blendshapes into
physical skinning deformations, validating the effectiveness
of the skinning-oriented design approach.



Fig. 6: Tracking Performance Validation. MSE error distributions between simulated and physically actuated facial articulation sequences
are presented using violin plots, box and whisker plots, and scattered points, with each point representing one frame. Evaluation landmarks
are grouped by facial region. Ten realistic facial articulation sequences from different speakers with distinct speaking styles were evaluated.
Mean median errors across the ten sequences for each facial region are 2.56mm (eye), 3.39mm (brow), 1.74mm (nose), 3.08mm (cheek),
3.86mm (mouth), and 5.03mm (jaw). This comprehensive visualization demonstrates the animatronic face’s ability to maintain consistent
tracking performance across diverse speaking styles while highlighting region-specific variations in accuracy.

Tracking Performance Validation: This experiment eval-
uates the animatronic platform’s dynamic tracking perfor-
mance in real-time by assessing its ability to follow reference
facial motions. Achieving responsive and accurate tracking
is crucial for enabling lifelike and synchronous facial ex-
pressions. The experimental setup employs the same VICON
system, with markers attached to the robot’s control points
and auxiliary skinning locations. A diverse set of 10 realistic
facial articulation sequences from different speakers with
distinct speaking styles from the training set, enhanced with
random blinks, serve as reference signals. These sequences
were carefully selected to encompass a wide range of full
facial dynamics, representative of the system’s intended
operating conditions and potential real-world applications.

As demonstrated in Fig. 6, the animatronic platform
exhibits remarkable tracking performance. The MSE errors
between the reference signals and the tracked positions
remain consistently low over time across all facial regions
and speaking styles. Comparing these dynamically achieved
errors with those obtained statically during the Motion Space
Validation experiment presented in Fig. 5, the errors for
different facial regions are very similar, on the millimeter
scale. These results validate the effectiveness of the proposed
electro-mechanical design in enabling precise and responsive
facial motion control, even under dynamic conditions mim-
icking natural speech production.

B. Imitation Learning Experiments

The following experiment assesses the validity of the pro-
posed speech-driven motion synthesis method in generating
realistic and expressive robot skinning motion references.
Evaluating motion quality poses challenges due to the com-
plex relationship between speech and facial expressions. As

various plausible motions can match the same utterance,
metrics such as prediction error are ineffective for assessing
synthesis quality. Instead, a blind user study is employed to
perform a perceptual evaluation and gauge the naturalness of
the generated motions.

The user study involves a binary comparison between
test sequences serving as ground truth and the developed
model’s output conditioned on all training subjects. The
test sequences are distinct from the training and valida-
tion sets and involve subjects not used during training.
These sequences, originally processed as dense human facial
skinning, are projected onto the human blendshape basis
by solving a constrained linear optimization problem. The
resulting blendshape coefficients are then retargeted to the
robot’s facial skinning to obtain the ground-truth motions.

Both ground-truth and generated motions are rendered as
textureless videos to focus the evaluation solely on motion
quality. Participants are asked to choose the more natural
motion matching the speech or indicate similar quality. The
display order is randomized to prevent bias. Participants must
pass a qualification test to ensure meaningful results.

In total, 12 qualified participants evaluated 80 video pairs
three times each. Results show participants preferred gen-
erated motions in 29.2% of tests, ground truth in 45.0%,
and similar quality in 25.8%. These findings validate the
motion synthesis model’s effectiveness in generating natural,
expressive robot skinning motions from speech, satisfying
human perception.

The overall performance, including the motion synthesis
on the developed animatronic robot face, is demonstrated in
the supplementary video. The developed system is capable
of automatically generating appropriate and dynamic facial
expressions from speech in real-time, indicating the validity



of the proposed skinning-centric approach that tightly inte-
grates embodiment design and motion synthesis. However,
it’s crucial to acknowledge the study’s limitations, such as
the lack of in-person interactions with the physical robot
and the limited participant pool. Future work should address
these constraints to further validate the system’s effectiveness
in real-world scenarios.

VII. CONCLUSIONS AND FUTURE WORKS

This paper introduces a novel, skinning-centric approach
to drive animatronic robot facial expressions from speech. By
employing LBS as the core representation, tightly integrated
innovations in embodiment design and motion synthesis are
achieved. LBS serves as a guiding principle for the actuation
topology, enables seamless human expression retargeting,
and facilitates speech-driven facial motion generation. Key
technical contributions include the skinning-oriented design
approach, the electro-mechanical implementation achiev-
ing millimeter-scale accuracy, and the imitation learning
method for motion synthesis. Experimental results conclu-
sively demonstrate that the developed animatronic robot
face successfully generates highly realistic facial expressions
from speech automatically and in real-time, validating the
effectiveness of the proposed approach.

Future research can build upon this work in two primary
directions. First, a general robot facial muscular system could
be explored that drives any human-like robot face simply
by replacing the customized skull and skinning components,
facilitating easy fabrication and control of customized ani-
matronic faces. This could involve developing modular actu-
ation units and adaptive control algorithms to accommodate
various facial structures. Second, more advanced imitation
learning methods could empower speech-synchronized robot
facial expressions with controllable emotions to enable com-
plex facial signals that support richer, more engaging human-
robot interactions. This might entail incorporating multi-
modal inputs beyond speech and developing more sophis-
ticated emotion models. As animatronic robot technology
continues to mature, realistic robotic faces will likely become
commonplace across entertainment, education, healthcare,
and other facets of life. This pioneering skinning-based
approach establishes a strong foundation for that future.
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