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Figure 1: We propose a scene agent to synthesize virtual scenes by observing the situated physical environment and the user’s
demand represented by language. The synthesized scenes maintain the affordance of physical objects and maintain the style
described by the user, enhancing users’ sense of security and interactive experience in VR. This technique contributes to
building ubiquitous embodied interfaces for users to conveniently enter the virtual world.

Abstract
Virtual reality provides access to immersive virtual environments
anytime and anywhere, allowing us to experience and interact with
virtual worlds in various fields like entertainment, training, and
education. However, users immersed in virtual scenes remain phys-
ically connected to their real-world surroundings, which can pose
safety and immersion challenges. Although virtual scene synthe-
sis has attracted widespread attention, many popular methods are
limited to generating purely virtual scenes independent of physical
environments or simply mapping physical objects as obstacles. To
this end, we propose a scene agent that synthesizes situated 3D
virtual scenes as a kind of ubiquitous embodied interface in VR for
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users. The scene agent synthesizes scenes by perceiving the user’s
physical environment as well as inferring the user’s demands. The
synthesized scenes maintain the affordances of the physical envi-
ronment, enabling immersive users to interact with the physical
environment and improving the user’s sense of security. Meanwhile,
the synthesized scenes maintain the style described by the user,
improving the user’s immersion. The comparison results show that
the proposed scene agent can synthesize virtual scenes with better
affordance maintenance, scene diversity, style maintenance, and
3D intersection over union compared to baselines. To the best of
our knowledge, this is the first work that achieves in situ scene
synthesis with virtual-real affordance consistency and user demand.

CCS Concepts
• Human-centered computing→Mixed / augmented reality;
Virtual reality.

Keywords
Scene synthesis, affordance, user demand, large language model.

ACM Reference Format:
Haiyan Jiang, Leiyu Song, Dongdong Weng, Zhe Sun, Huiying Li, Xi-
aonuo Dongye, and Zhenliang Zhang. 2024. In Situ 3D Scene Synthesis

https://doi.org/10.1145/3664647.3681616


MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia Haiyan Jiang and Leiyu Song, et al.

for Ubiquitous Embodied Interfaces. In Proceedings of the 32nd ACM In-
ternational Conference on Multimedia (MM ’24), October 28-November 1,
2024, Melbourne, VIC, Australia. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3664647.3681616

1 Introduction
Virtual reality (VR) has the potential to enhance the physical en-
vironment, extending the boundaries of the physical world [20]
and providing a highly interactive and immersive environment for
users in a variety of applications (e.g., games, training, and educa-
tion). This enables users to experience a variety of environments
from a single physical location, thereby alleviating the need to
travel, reducing carbon emissions, enhancing productivity, and po-
tentially augmenting overall life satisfaction [29, 50]. For example,
many works have provided virtual offices for knowledge work-
ers [3, 21] to improve their working experience. Most of the current
virtual scenes are set manually by professionals. Fortunately, recent
progress in scene synthesis makes it possible to acquire low-cost
and high-quality virtual scenes. The 3D models-based method is an
efficient way to synthesize scenes [32, 58] which has a wide range
of applications, from indoor design and games to simulators for
embodied artificial intelligence (AI). However, since human users
are always located in physical environments, an important problem
arises in implementing virtual applications: How to acquire virtual
scenes that are consistent with the constraints of physical space?

Most VR applications are used indoors with limited space, risking
users hitting nearby objects when using VR devices[10, 27]. How-
ever, physical objects can provide affordances [28, 37, 52] and pas-
sive feedback[17, 18, 25, 54], enhancing their experience, task per-
formance and the interactivity of VR applications. Some works syn-
thesize virtual scenes based on physical environments [9, 53, 56, 62],
but they usually adopt 3D models that are consistent with physical
objects [53] (e.g., virtual tables for physical tables), reducing the
diversity of virtual scenes. Alternatively, these works may only con-
sider walking areas [9, 56, 62] while neglecting other interactions
between users and environments.

In the context of situated scene synthesis, the main goal is to
synthesize interactive scenes based on their situated physical envi-
ronments, considering the affordance of the physical objects. When
immersed in the virtual scene, users can perceive and utilize the
affordance of physical objects, ensuring a highly immersive experi-
ence for them. At the same time, it is also necessary to synthesize
virtual scenes that meet users’ demands. Generally, users can be
immersed in any virtual scene they desire if the synthesized scenes
are unlimited, making it crucial to understand their demands to
meet personalized requirements. Due to the uncertainty of phys-
ical environments and the various personalized needs of users, a
well-situated scene synthesis solution should not only exploit the
physical objects as building blocks for better physical-virtual con-
sistency but also understand human users’ demands via efficient
interactions, such as natural language [36, 55].

Therefore, we propose a scene agent that leverages the informa-
tion extraction capabilities of a large languagemodel (LLM) [30] and
its prior knowledge related to scenes [14]. This agent observes both
user demands and the situated physical environments to synthesize
interactive virtual scenes, as shown in figure 1. For each physical
object, the scene agent infers the corresponding virtual object by

considering two aspects: the affordance similarity between physical
and virtual objects, and the style similarity (including place, season,
and object) between user demands and virtual objects. Afterward,
according to the physical information, the scene agent synthesizes
scenes by translating, rotating, and scaling virtual objects. This
allows the synthesized scene to maintain both the affordances of
physical objects and the desired scene style for the user.

To the best of our knowledge, this is the first work that synthe-
sizes arbitrary virtual scenes with physical interactivity considering
both the physical environment and the user’s demand. Overall, our
contributions are threefold:

(1) We propose a language model-based 3D scene synthesis
method to extract information of the physical environment,
virtual objects, and the user input text, generating their se-
mantic relations for building the interactive agent system.

(2) We develop a scene agent based on the above method to
perceive the physical affordance and user demand, which can
synthesize interactive virtual scenes for handling physical
constraints and satisfying the user’s personalized demands.

(3) We conduct comparison studies between our method and
three baselines, followed by a perceptual study, to demon-
strate that the proposed scene agent could synthesize better
scenes with affordance and style maintenance.

2 Related work
2.1 3D Scene synthesis
Generative models have contributed to the synthesis of outdoor
3D scenes [60]. However, these generated scenes do not support
human-object interaction. Researchers synthesize indoor 3D scenes
by selecting objects from object datasets and generating layouts
based on procedural modelingwith grammars [31, 44, 47], graph [32,
35, 58, 65], auto-regressive neural networks [49], transformer [43],
and diffusion models [13]. Some methods consider the interaction
between humans and environments, such as human motions[48]
with human-object contact [63] and poses [64]. Affordance could
serve as a bridge to characterize the human-object relations[48].
The aforementioned human-centric scene synthesis methods all
took advantage of the object affordance for human-object interac-
tion. However, these works are based on existing human interaction
actions. In this work, we will synthesize virtual scenes considering
object affordances without human action priors.

2.2 Language-driven 3D Scene synthesis
Language, as an important medium for human-computer inter-
action, has been used for 3D scene synthesis.RoomDreamer [55]
aligned the geometry and texture to the input scene structure and
prompt simultaneously. GAUDI [2] was a generative model that
enabled both unconditional and conditional synthesis, including
image, text, category. SceneDreamer [8] synthesized unbounded
in-the-wild 3D scenes from 2D images using a GAN network. CTRL-
ROOM [13] controlled the scene synthesis with a diffusion model,
allowing scene changes. However, those synthesized scenes cannot
support immersive interaction in VR. PiGraphs [51] synthesized
human pose priors-based scenes that included only human action-
related objects mentioned in the language specifications. Chang et
al. [4–7] and Ma et al. [36] parsed the input text into a knowledge
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tree or graph for synthesis, where the initial scene could be changed
by language. These methods aim at indoor scene synthesis, requir-
ing explicit instructions and can only specify virtual objects directly
from the database. In this work, we plan to synthesize both indoor
and outdoor virtual scenes without explicit instructions.

2.3 Situation-aware scene synthesis
Some works synthesize scenes based on the user’s situated physical
environment. Human-in-loop methods require users to manually
place virtual objects in the positions of corresponding physical
objects [12, 26]. Other methods adopt auto-generation paradigms.
DreamWalker [62] detected walkable paths and obstacles, mapping
paths to resembling virtual paths and obstacles to default virtual
objects. VRoamer [9] and Sra et al. [56, 57] extracted walkable areas
and physical obstacles according to the scanned physical environ-
ment. VRoamer generated corridors and doors for walkable areas
while bricks or spikes for obstacles. Sra et al. [56, 57] generated
boundary elements in the boundary of the walkable areas, where
several special objects (e.g.chairs) were mapped as virtual counter-
parts to leverage the affordance of the physical objects.

These methods focus on walkable areas and a few special objects,
leading to limited interactivity in the synthesized 3D scene. Shapira
[52] first placed specialized 3D object models in the scene and then
optimized their arrangement based on planar areas, but did not
consider interactivity. Our goal is to generate arbitrary scenes with
the same interactivity as the physical world.

3 Preliminary
In this section, we introduce the concepts and symbols adopted.

Scene presentation. A physical environment S𝑝ℎ𝑦 including all

𝑁 physical object information
{
𝑜
𝑝ℎ𝑦
𝑛

}𝑁
𝑛=1
∈ O𝑝ℎ𝑦 , where each tu-

ple 𝑜𝑝ℎ𝑦𝑛 denotes the information of a physical object. A synthesized
virtual scene S𝑣𝑖𝑟 including a basic scene background 𝑏𝑣𝑖𝑟𝑖 and all
𝑀 virtual object information

{
𝑜𝑣𝑖𝑟𝑚

}𝑀
𝑚=1 ∈ O

𝑣𝑖𝑟 , where each tuple

𝑜𝑣𝑖𝑟𝑚 denotes the information of a virtual object. B =

{
𝑏𝑣𝑖𝑟
ℎ

}𝐻
ℎ=1

denotes all 𝐻 basic scenes. For a physical object 𝑜𝑝ℎ𝑦
𝑖

or a virtual
object 𝑜𝑣𝑖𝑟

𝑖
, it contains attribute information {𝑐𝑖 , 𝑑𝑖 , 𝑡𝑖 , 𝑟𝑖 , 𝑠𝑖 }: cate-

gory 𝑐𝑖 , description 𝑑𝑖 (can be empty), bounding box location 𝑡𝑖 =
(𝑡𝑥𝑖 , 𝑡𝑦𝑖 , 𝑡𝑧𝑖 ) ∈ R3, bounding box rotation 𝑟𝑖 = (𝑟𝑤𝑖 , 𝑟𝑥𝑖 , 𝑟𝑦𝑖 , 𝑟𝑧𝑖 ) ∈
R4, and bounding box size 𝑠𝑖 = (𝑠𝑥𝑖 , 𝑠𝑦𝑖 , 𝑠𝑧𝑖 ) ∈ R3.

Affordance. Affordance, first introduced by psychologist Gib-
son [16], represents the action possibilities of an object perceived
by an actor [23].A = {𝑎𝑘 }𝐾𝑘=1 is a tuple of𝐾 kind of affordances for
a object, where each tuple 𝑎𝑘 denotes one kind of affordance. Based
on previous works [23, 34], we consider ten different affordances
for the objects: walkable, supportable, sitable, drinkable, eatable,
graspable, breakable, dangerous, moveable, obstructive.

Virtual place type. Theoretically, the types of virtual places can
be unlimited. We ask GPT-4 [42] to summarize P virtual place types
that people want to go to. We find that when P>20, the types are
repeated. Therefore, we select 20 types: Library, Conservatory, Spa,
Lounge, Observatory, Suite, Monastery, Studio, Bookstore, Aquarium,
Beach, Forest, Garden, Vineyard, Yacht, Rooftop, Treehouse, Reef, Peak,

Rainforest. E =
{
𝑒𝑝
}𝑃
𝑝=1 denotes the tuple of 𝑃 kinds of virtual

places, where 𝑒𝑝 denotes the 𝑝-th virtual place.
Season. Some objects have obvious seasonality, such as a bench

covered by snow. We consider the probability that each object can
appear in each reason including spring, summer, autumn, winter.
T =

{
𝑡 𝑗
} 𝐽
𝑗=1 denotes the tuple of 𝐽 kinds of seasons, where 𝑡 𝑗

denotes the 𝑗-th season.
User demand. Users could express what kind of scene they

want to go by a sentence 𝑢. Speech is also compatible as it can be
converted to texts by speech-to-text techniques. In this paper, we
extract season 𝑡𝑢𝑠𝑒𝑟 , place 𝑒𝑢𝑠𝑒𝑟 , and possible objects information

from user demand𝑢. O𝑢𝑠𝑒𝑟 =
{
𝑜𝑢𝑠𝑒𝑟𝑞

}𝑄
𝑞=1

denotes a tuple of𝑄 kinds

of objects mentioned. 𝑜𝑢𝑠𝑒𝑟𝑞 only includes the category 𝑐𝑞 .

4 Synthesis method
Our proposed scene agent synthesizes scenes by observing the sit-
uated physical environment and the user’s demand. The physical
environment information could be obtained via volumetric instance-
aware semantics mapping methods from RGB-D information[19,
22]. Our goal is to synthesize user-expected virtual scenes. These
scenes maintain the affordances of the physical environment and
maintain the style that the user wants. Formally, guided by a phys-
ical environment S𝑝ℎ𝑦 and a user demand 𝑢, the proposed scene
agent synthesizes scenes S𝑣𝑖𝑟 ∼ P(S𝑣𝑖𝑟 |S𝑝ℎ𝑦, 𝑢).

Synthesizing a virtual scene with one sentence is a hefty task.
Therefore, apart from plain text from the user, we also consider
information about the physical environment and virtual objects to
solve this problem. The first step is to understand the user’s demand.
At the same time, we infer the affordance of the situated physical
environment. In addition, we infer the features of all virtual objects.
Finally, we synthesize the whole virtual scene based on all the
results of the first three steps. The whole scene synthesis pipeline
is shown in figure 2 and the algorithm is outlined in Algorithm 1.

4.1 User demand inference
We propose a user text extractor 𝐸𝑢𝑠𝑒𝑟 (𝑒𝑢𝑠𝑒𝑟 , 𝑡𝑢𝑠𝑒𝑟 ,O𝑢𝑠𝑒𝑟 |𝑢) based
on a LLM which infer the place 𝑒𝑢𝑠𝑒𝑟 , season 𝑡𝑢𝑠𝑒𝑟 , and possible
objects information O𝑢𝑠𝑒𝑟 according to the prompt with the user
demand 𝑢. 𝑒𝑢𝑠𝑒𝑟 , 𝑡𝑢𝑠𝑒𝑟 and O𝑢𝑠𝑒𝑟 can be empty. More details about
𝐸𝑢𝑠𝑒𝑟 (𝑒𝑢𝑠𝑒𝑟 , 𝑡𝑢𝑠𝑒𝑟 ,O𝑢𝑠𝑒𝑟 |𝑢) can be found in the Appendix.

We adopt the similarity predictor 𝐿(·, ·) [15] to infer: the scene
background similarity 𝑉B𝑢𝑠𝑒𝑟 ∈ R𝐻 between user mentioned place
𝑒𝑢𝑠𝑒𝑟 and each basic scene 𝑏𝑣𝑖𝑟

𝑖
in B by 𝐿(𝑒𝑢𝑠𝑒𝑟 ,B); the similarity

𝑉E𝑢𝑠𝑒𝑟 ∈ R𝑃 between user mentioned place 𝑒𝑢𝑠𝑒𝑟 and each place
𝑒𝑘 in E by 𝐿(𝑒𝑢𝑠𝑒𝑟 , E); the similarity 𝑉T𝑢𝑠𝑒𝑟 ∈ R𝐽 between user
mentioned season 𝑡𝑢𝑠𝑒𝑟 and each season 𝑡𝑘 in E by 𝐿(𝑡𝑢𝑠𝑒𝑟 ,T);
the similarity 𝑉O𝑢𝑠𝑒𝑟 ∈ R𝑀 between all virtual objects O𝑣𝑖𝑟 and
user mentioned objects O𝑢𝑠𝑒𝑟 . 𝑉O𝑢𝑠𝑒𝑟 represents the maximum
value of similarity between each virtual object and all objects
mentioned by the user. 𝑉O𝑢𝑠𝑒𝑟 = max𝑖 𝑉𝑂𝑢𝑠𝑒𝑟

𝑄
[𝑖, 𝑗] and 𝑉𝑂𝑢𝑠𝑒𝑟

𝑄
=

[𝑉𝑜𝑢𝑠𝑒𝑟1
,𝑉𝑜𝑢𝑠𝑒𝑟2

, ...,𝑉𝑜𝑢𝑠𝑒𝑟𝑞
], 𝑉𝑂𝑢𝑠𝑒𝑟

𝑄
∈ R𝑄×𝑀 and 𝑉𝑂𝑢𝑠𝑒𝑟

𝑄
is the sim-

ilarity matrix of all virtual objects and all objects mentioned in
user text 𝑢. Specially, if 𝑒𝑢𝑠𝑒𝑟 , 𝑡𝑢𝑠𝑒𝑟 or O𝑢𝑠𝑒𝑟 is empty, all values of
corresponding similarity in 𝑉B𝑢𝑠𝑒𝑟 , 𝑉E𝑢𝑠𝑒𝑟 , 𝑉T𝑢𝑠𝑒𝑟 or 𝑉O𝑢𝑠𝑒𝑟 are 1.
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Figure 2: The synthesis algorithm. First, the LLM extracts the place, season, and objects mentioned by the user 𝑢 to predict their
similarity with all places, seasons, and virtual objects via a language similarity module. Additionally, the LLM predicts the
affordance confidence of each physical object and the attribute likelihoods of virtual objects. Next, a cosine similarity module
calculates three similarities: the affordance similarity between each physical object and all virtual objects; the place and season
similarities between the virtual objects, and the user demand. A size similarity module assesses the size similarity between each
physical object and all virtual objects. Finally, the corresponding virtual objects with the highest likelihood for each physical
object and the basic scene with the highest likelihood are selected for scene synthesis. ⊗ denotes element-wise multiplication.

4.2 Physics-based inference
For synthesizing scenes where users could take advantage of phys-
ical objects’ affordance, the affordance of the virtual object should
be aligned with that of the corresponding physical object. There-
fore, we propose an affordance LLM-based predictor 𝐴(𝑉A |A,O)
to infer the confidence of each affordance of an object. For the
𝑛-th physical object, the affordance confidence𝑉A𝑝ℎ𝑦

𝑛
can be got by

𝐴(·|A, 𝑐𝑛, 𝑠𝑛), {𝑐𝑛, 𝑠𝑛} ∈ 𝑜𝑝ℎ𝑦𝑛 according to the prompt with the cat-
egory 𝑐𝑛 and size 𝑠𝑛 of the 𝑛-th physical object and the affordance
listA. All confidences are represented by a one-dimensional vector.
More details about 𝐴(𝑉A |A,O) can be found in the Appendix.

4.3 Virtual object-based inference
The affordance predictor𝐴(𝑉A |A,O) infers the confidence of each
affordance for a virtual object. For the𝑚-th virtual object, the affor-
dance confidence 𝑉A𝑣𝑖𝑟

𝑚
can be got by 𝐴(·|A, 𝑐𝑚, 𝑠𝑚), {𝑐𝑚, 𝑠𝑚} ∈

𝑜𝑣𝑖𝑟𝑚 according to the prompt with its category 𝑐𝑚 , its size 𝑠𝑚 and
the affordance list A. Additionally, we propose a place predictor
𝐸 (𝑉E |E,O) based on the LLM to infer the likelihood of a virtual
object appearing in each virtual place. For the𝑚-th virtual object,
its likelihood of appearing in each place 𝐸 (𝑉E |E,O) can be got by
𝐸 (·|E, 𝑐𝑚, 𝑠𝑚, 𝑑𝑚), {𝑐𝑚, 𝑑𝑚} ∈ 𝑜𝑣𝑖𝑟𝑚 according to the prompt with
its category 𝑐𝑚 and description 𝑑𝑚 . Moreover, we propose a season
predictor 𝑇 (𝑉T |T ,O) based on the LLM to infer the likelihood of
a virtual object appearing in each season. For𝑚-th virtual object,
the likelihood of it appearing in each season 𝑉T𝑣𝑖𝑟

𝑚
can be got by

𝑇 (·|T , 𝑐𝑚, 𝑠𝑚), {𝑐𝑚, 𝑠𝑚} ∈ 𝑜𝑣𝑖𝑟𝑚 according to the prompt with its
category 𝑐𝑚 and description 𝑑𝑚 . Similarities, confidences, and like-
lihoods are represented by one-dimensional vectors. More details
can be found in the Appendix.

4.4 Scene synthesis
As shown in Algorithm 1, after obtaining the results of Section 4.1,
4.2 and 4.3, the whole scene can be synthesized. First, we get the
basic scene 𝑏𝑣𝑖𝑟

𝑖
with the highest likelihood in 𝑉B𝑢𝑠𝑒𝑟 . We then

get the corresponding virtual object 𝑜𝑣𝑖𝑟𝑛 for each physical object
𝑜
𝑝ℎ𝑦
𝑛 with the highest likelihood considering both affordance and
size similarities, as well as place, season, and object similarities
with user demands. We propose a module𝐶 (𝑉𝑖 ,𝑉𝑗 ) to calculate the
cosine similarity of two vectors and a module 𝑆 (𝑜𝑖 , 𝑜 𝑗 ) to assess
size similarity between virtual and physical objects. Additionally,
we propose an adjusted module 𝐼𝑜𝑈 (𝑜𝑣𝑖𝑟 |𝑜𝑝ℎ𝑦) to get the position,
rotation, and size {𝑡𝑛, 𝑟𝑛, 𝑠𝑛} of each virtual object corresponding to
the physical object. 𝐼𝑜𝑈 (𝑜𝑣𝑖𝑟 |𝑜𝑝ℎ𝑦) maximizes the 3D Intersection
over Union (IoU) between 𝑜𝑣𝑖𝑟𝑛 and 𝑜𝑝ℎ𝑦𝑛 by adjusting the virtual
object’s position, rotation, and size. Finally, we load the selected
basic scene 𝑏𝑣𝑖𝑟

𝑖
and all selected virtual objects

{
𝑜𝑣𝑖𝑟𝑛

}𝑁
𝑛=1 to synthe-

size scene S𝑣𝑖𝑟 . More details including the 𝑆 (𝑜𝑖 , 𝑜 𝑗 ) can be found
in the Appendix.

5 Experiment Setup
5.1 Dataset and Implementation Details
To evaluate the synthesis performance of the proposed method,
we use 12 indoor scenes from [11] and 18 scenes from [24] as the
physical room input. For each physical room, 12 sentences of user
demand are used for scene synthesis, resulting in (12+18)∗12 = 360
synthesized scenes for evaluation. In addition, we use 350 virtual
objects from three Unity Asset Store packages [1, 39, 40] for scene
synthesis. Figure 3 demonstrates several synthesized scenes.
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Physical scene

Figure 3: Examples of the synthesized scenes of our method.
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Algorithm 1 In situ scene synthesis
Input: 𝑢: user’s input; A: all affordances; E: all virtual places;
T : all seasons; O𝑣𝑖𝑟 : all virtual objects, 𝑜𝑣𝑖𝑟𝑚 ∈ O𝑣𝑖𝑟 ; O𝑝ℎ𝑦 :
all physical objects, 𝑜𝑝ℎ𝑦𝑛 ∈ O𝑝ℎ𝑦 ; 𝐸𝑢𝑠𝑒𝑟 (𝑒𝑢𝑠𝑒𝑟 , 𝑡𝑢𝑠𝑒𝑟 ,O𝑢𝑠𝑒𝑟 |𝑢):
text extractor; 𝐿(·, ·): language similarity; 𝐴(𝑉A |A,O): affor-
dance predictor; 𝐸 (𝑉E |O): place predictor; 𝑇 (𝑉T |O): season
predictor.

Output: S𝑣𝑖𝑟 : the synthesized virtual scene corresponding with
the physical environment S𝑝ℎ𝑦 .
//* User demand inference.*//

1: {𝑒𝑢𝑠𝑒𝑟 , 𝑡𝑢𝑠𝑒𝑟 ,O𝑢𝑠𝑒𝑟 } ∼ 𝐸𝑢𝑠𝑒𝑟 (·|𝑢)
2: 𝑉B𝑢𝑠𝑒𝑟 ← 𝐿(𝑒𝑢𝑠𝑒𝑟 ,B), 𝑉B𝑢𝑠𝑒𝑟 ∈ R𝐻
3: 𝑉E𝑢𝑠𝑒𝑟 ← 𝐿(𝑒𝑢𝑠𝑒𝑟 , E), 𝑉E𝑢𝑠𝑒𝑟 ∈ R𝑃
4: 𝑉T𝑢𝑠𝑒𝑟 ← 𝐿(𝑡𝑢𝑠𝑒𝑟 ,T) , 𝑉T𝑢𝑠𝑒𝑟 ∈ R𝐽
5: for 𝑞 = 1 : 𝑄 do
6: 𝑉𝑜𝑢𝑠𝑒𝑟𝑞

← 𝐿(𝑜𝑢𝑠𝑒𝑟𝑞 ,O𝑣𝑖𝑟 ), 𝑜𝑢𝑠𝑒𝑟𝑞 ∈ O𝑢𝑠𝑒𝑟 , 𝑉𝑜𝑢𝑠𝑒𝑟𝑞
∈ R𝑀

7: end for
8: 𝑉𝑂𝑢𝑠𝑒𝑟

𝑄
= [𝑉𝑜𝑢𝑠𝑒𝑟1

,𝑉𝑜𝑢𝑠𝑒𝑟1
, ...,𝑉𝑜𝑢𝑠𝑒𝑟𝑞

], 𝑉𝑂𝑢𝑠𝑒𝑟
𝑄
∈ R𝑄×𝑀

9: 𝑉O𝑢𝑠𝑒𝑟 = max𝑖 𝑉𝑂𝑢𝑠𝑒𝑟
𝑄
[𝑖, 𝑗], 𝑉O𝑢𝑠𝑒𝑟 ∈ R𝑀

//* Physical affordance inference.*//
10: for 𝑛 = 1 : 𝑁 do
11: 𝑉A𝑝ℎ𝑦

𝑛
∼ 𝐴(·|A, 𝑐𝑛, 𝑠𝑛), {𝑐𝑛, 𝑠𝑛} ∈ 𝑜𝑝ℎ𝑦𝑛 , 𝑉A𝑝ℎ𝑦

𝑛
∈ R𝐾

12: end for
//* Virtual object-based inference.*//

13: for𝑚 = 1 : 𝑀 do
14: 𝑉A𝑣𝑖𝑟

𝑚
∼ 𝐴(·|A, 𝑐𝑚, 𝑠𝑚), {𝑐𝑚, 𝑠𝑚} ∈ 𝑜𝑣𝑖𝑟𝑚 , 𝑉A𝑣𝑖𝑟

𝑚
∈ R𝐾

15: 𝑉E𝑣𝑖𝑟𝑚
∼ 𝐸 (·|E, 𝑐𝑚, 𝑑𝑚), {𝑐𝑚, 𝑑𝑚} ∈ 𝑜𝑣𝑖𝑟𝑚 , 𝑉E𝑣𝑖𝑟𝑚

∈ R𝑃

16: 𝑉T𝑣𝑖𝑟
𝑚
∼ 𝑇 (·|T , 𝑐𝑚, 𝑑𝑚), {𝑐𝑚, 𝑑𝑚} ∈ 𝑜𝑣𝑖𝑟𝑚 , 𝑉T𝑣𝑖𝑟

𝑚
∈ R𝐽

17: end for
//* Whole scene synthesis.*//

18: 𝑏𝑣𝑖𝑟
𝑖
← argmax𝑉B𝑢𝑠𝑒𝑟

19: for 𝑛 = 1 : 𝑁 do
20: 𝑜𝑣𝑖𝑟𝑛 ← argmax𝑜𝑣𝑖𝑟𝑚 ∈O𝑣𝑖𝑟 (𝐶 (𝑉A𝑝ℎ𝑦

𝑛
,𝑉A𝑣𝑖𝑟

𝑚
) ∗

𝐶 (𝑉E𝑢𝑠𝑒𝑟 ,𝑉E𝑣𝑖𝑟𝑚
) ∗ 𝐶 (𝑉T𝑢𝑠𝑒𝑟 ,𝑉T𝑣𝑖𝑟

𝑚
) ∗ 𝑆 (𝑜𝑝ℎ𝑦𝑛 , 𝑜𝑣𝑖𝑟𝑚 ) ∗

(𝑉O𝑢𝑠𝑒𝑟 [𝑚]))
21: {𝑡𝑛, 𝑟𝑛, 𝑠𝑛} of 𝑜𝑣𝑖𝑟𝑛 ← 𝐼𝑜𝑈 (𝑜𝑣𝑖𝑟𝑛 |𝑜

𝑝ℎ𝑦
𝑛 )

22: end for
23: S𝑣𝑖𝑟 ← Load 𝑏𝑣𝑖𝑟

𝑖
and all

{
𝑜𝑣𝑖𝑟𝑛

}𝑁
𝑛=1

5.2 Baselines
We compare the proposed method with three typical baselines:
LLM, Semantics, andVRoamer-basedmethods. LLM-basedmethod,
similar to Feng’s work [14], predicts the corresponding virtual ob-
ject for each physical object using its information as the prompt.
Semantics-basedmethod, like those used in commercial head-mounted
displays [38, 46] that deploy virtual objects matching the category
of physical objects, predicts the corresponding virtual object based
on language similarity between the virtual and physical objects.
VRoamer-based method [9] synthesizes the scene by using virtual
objects with obstructive affordance. In our VRoamer-based baseline,
the virtual objects with a 1.0 confidence of obstructive affordance
are randomly used to synthesize the scene. In addition, LLM-based,
Semantics-based, and VRoamer-based without (w/o) size (LLMw/o
size, Semantics w/o size, VRoamer w/o size) or with size (LLM
with size, Semantics with size, VRoamer with size) constraints

respectively are compared. Figure 4 demonstrates examples syn-
thesized by different methods. Please find more details about the
baselines in the Appendix.

Table 1: Quantitative comparison results on SceneNN dataset.

Methods KL Div.(↓)SD (↑)Sty. Sim.(↑) 3D IoU (↑)
w/ scalew/o scale

LLM w/o size 0.198 0.134 0.550 0.362 0.114
LLM with size 0.748 0.218 0.554 0.705 0.348

Semantics w/o size 0.149 0.319 0.500 0.486 0.173
Semantics with size 0.217 0.361 0.512 0.743 0.356
VRoamer w/o size 0.455 0.134 0.571 0.349 0.109
VRoamer with size 0.327 0.184 0.568 0.660 0.322

Ours 0.027 0.386 0.763 0.858 0.427

Table 2: Quantitative comparison results on ProcTHOR
dataset.

Methods KL Div. (↓)SD (↑)Sty. Sim.(↑) 3D IoU (↑)
w/ scalew/o scale

LLM w/o size 1.057 0.168 0.533 0.208 0.057
LLM with size 0.364 0.311 0.542 0.620 0.302

Semantics w/o size 0.206 0.493 0.513 0.409 0.148
Semantics with size 0.033 0.545 0.521 0.684 0.338
VRoamer w/o size 1.196 0.207 0.578 0.183 0.051
VRoamer with size 0.854 0.246 0.570 0.381 0.180

Ours 0.042 0.618 0.749 0.729 0.368

5.3 Quantitative evaluation
For indoor scene synthesis, Kullback-Leibler Divergence (KL Div.)
between the category distribution of predicted and ground truth
scenes and the Fréchet Inception Distance (FID) scores of specific
projection [14, 45, 49] are usually adopted as evaluationmetrics. Our
approach synthesizes different scenes without ground truth rather
than indoor scenes, leading to the above twometrics are not suitable
for evaluating our approach. One of our goals is to synthesize scenes
with the same affordance as physical environments. Furthermore,
our approach is expected to synthesize scenes containing different
types of virtual objects as in physical environments. Therefore, we
measure the affordance maintenance and scene diversity (SD)
of the synthesized scenes. In addition, we measure style similarity
(Sty. Sim.) between the virtual objects in the synthesized scenes
and the user demand and the 3D intersection over union (IoU)
between the physical objects and the corresponding virtual objects.
Table 1 and Table 2 show the comparison results compared with
six baselines on SceneNN dataset [24] and ProcTHOR dataset [11].

5.3.1 Affordance maintenance. We measure the affordance mainte-
nance via KL Div. between the affordance class distribution of the
virtual objects and the affordance class distribution of the physical
objects. The results show that the objects in the scene synthesized
by our method have more consistent affordances with physical
objects than the baselines.

5.3.2 Scene diversity. We measure the SD via the number of object
type distances between the types of objects in synthesized scenes
and in physical environments.

𝑆𝐷 = 1 −
��𝑁𝑠𝑦𝑛 − 𝑁𝑝ℎ𝑦 ��

𝑁𝑝ℎ𝑦
(1)

where𝑁𝑠𝑦𝑛 means the number of types of objects in the synthesized
scenes and 𝑁𝑝ℎ𝑦 means that in the physical environments. The
bigger value of SD means that synthesized scenes and physical
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Figure 4: Examples of the synthesized scenes of four methods.

environments have a similar number of object types. The results
show that the scenes synthesized by ourmethod have amore similar
number of object types to the physical environments compared
with the baselines. That means scenes synthesized by our method
have a more realistic scene diversity.

5.3.3 Style similarity. We hope the style of virtual objects can meet
the user’s demands. Therefore, we measure the Sty. Sim. between
virtual objects in synthesized scenes and user input.

𝑆𝑡𝑦. 𝑆𝑖𝑚. = 𝑤1 ∗𝐴𝑣𝑒𝑟𝑎𝑔𝑒 (
𝑁∑︁
𝑛=1
(𝑉𝐵𝑢𝑠𝑒𝑟 [𝑖𝑛𝑑_𝑚] ∗𝑉𝐸𝑣𝑖𝑟𝑛

[𝑖𝑛𝑑_𝑚]))︸                                                        ︷︷                                                        ︸
𝑠𝑐𝑒𝑛𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦

+𝑤2 ∗𝐴𝑣𝑒𝑟𝑎𝑔𝑒 (
𝑁∑︁
𝑛=1

𝐶 (𝑉T𝑢𝑠𝑒𝑟 ,𝑉𝑇 𝑣𝑖𝑟
𝑖𝑛𝑑_𝑛
)︸                                   ︷︷                                   ︸

𝑠𝑒𝑎𝑠𝑜𝑛 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦

) +𝑤3 ∗𝐴𝑣𝑒𝑟𝑎𝑔𝑒 (
𝑁∑︁
𝑛=1

𝑉O𝑢𝑠𝑒𝑟
𝑖𝑛𝑑_𝑛
)︸                      ︷︷                      ︸

𝑜𝑏 𝑗𝑒𝑐𝑡 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦

)

(2)
where𝑤1 =

1
3 ,𝑤2 =

1
3 , and𝑤3 =

1
3 are the weights of the scene sim-

ilarity, season similarity, and object similarity. 𝑖𝑛𝑑_𝑚 is the index
satisfying𝑉𝐵𝑢𝑠𝑒𝑟 [𝑖𝑛𝑑_𝑚] = argmax(𝑉𝐵𝑢𝑠𝑒𝑟 ).𝑉𝐵𝑢𝑠𝑒𝑟 [𝑖𝑛𝑑_𝑚] means
the 𝑖𝑛𝑑_𝑚-th scene background that best matches user demand.
𝑉𝐸𝑣𝑖𝑟𝑛

[𝑖𝑛𝑑_𝑚] means the likelihood of the 𝑛-th object appearing
in the 𝑖𝑛𝑑_𝑚-th scene. 𝑖𝑛𝑑_𝑛 is the index of virtual objects corre-
sponding to the 𝑛-th physical objects.𝐶 (𝑉T𝑢𝑠𝑒𝑟 ,𝑉𝑇 𝑣𝑖𝑟

𝑖𝑛𝑑_𝑛
) means the

similarity between the season likelihood of 𝑖𝑛𝑑_𝑛-th virtual object
matching the seasons mentioned by the users in their demand 𝑢.
𝑉O𝑢𝑠𝑒𝑟

𝑖𝑛𝑑_𝑛
means the likelihood of the 𝑖𝑛𝑑_𝑛-th virtual objects match-

ing the objects mentioned in the user demand 𝑢. The results show
that the scenes synthesized by our method can better maintain the
style of the scene that the user demands compared to the baselines.

5.3.4 3D IoU. We measure the 3D intersection over union (IoU)
to evaluate the degree of overlap between virtual objects of syn-
thesized scenes and physical objects in physical environments. We
compare all methods in two situations: with (w/) scale and without
(w/o) scale. with (w/) scale means the virtual objects are scaled ac-
cording to the size of the physical objects, while without (w/o) scale
means the virtual objects keep the size of themselves. The scaling
factor is limited to the range from 0.5 to 2 to avoid deforming ob-
jects too much. The results show that the scenes synthesized by
our method have better 3D IoU.

Figure 5: Results of the perceptual study. (a) Scores indicating
how well the synthesized scene matches the user’s descrip-
tion; (b) Affordance and stylemaintenance of the synthesized
scenes. (***: 𝑝 < 0.001.)

5.4 Qualitative experiment
We conduct a perceptual study to evaluate the quality of the syn-
thesized scenes as [43]. To this end, we randomly sampled 6 scenes
for evaluation. Since the results of methods without size have huge
errors and VRoamer-based methods adopt random obstacles to syn-
thesize scenes, we compared our methods with LLM with size
and Semantics with size. 10 participants aged 21-32 (6 male, 4 fe-
male) recruited from our university have participated in this study.
This study was conducted with a PC display. The participants were
seated in front of the display, where they could browse the scanned
physical environment and corresponding synthesized scenes from
different perspectives and then provided scores for each question.
Participants filled out scores of the following two questions on
a 5-point Likert scale (1 is the least consistent and 5 is the most
consistent) for each scene. A total of 60 sets of data are collected.
Q1: The synthesized scene matches the user’s demands. Q2: The
objects in the synthesized scene maintain affordances to the objects
in the physical room and maintain style consistency.

Figure 5 shows the results of the two questions. General repeated
measures ANOVA tests and paired T-tests with correction, if needed,
are used to analyze the data. There is a significant difference among
the three groups (Q1: 𝐹2,46.439 = 101.876, 𝑝 < 0.001; Q2: 𝐹2,39.627 =
100.338, 𝑝 < 0.001). The scenes synthesized by our method are
significantly better than LLM with size (Q1: 𝑡59 = 12.672, 𝑝 <

0.001, Q2: 𝑡59 = 13.105, 𝑝 < 0.001 ) and Semantics with size (Q1:
𝑡59 = 13.233, 𝑝 < 0.001, Q2: 𝑡59 = 12.624, 𝑝 < 0.001). There is no
significant difference between LLMwith size and Semantics with
size (Q1: 𝑡59 = 1.841, 𝑝 = 0.071, Q2: 𝑡59 = 0.134, 𝑝 = 0.894).
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Table 3: Ablation results of SceneNN dataset.

affordance place season size object KL Div. (↓) SD (↑) Sty. Sim. (↑) 3D IoU (↑)
w/ scale w/o scale

ours ✓ ✓ ✓ ✓ ✓ 0.027 0.386 0.763 0.858 0.427
w/o affordance ✓ ✓ ✓ ✓ 0.160 0.453 0.803 0.886 0.452

w/o place ✓ ✓ ✓ ✓ 0.110 0.369 0.681 0.892 0.453
w/o season ✓ ✓ ✓ ✓ 0.025 0.386 0.749 0.864 0.434
w/o size ✓ ✓ ✓ ✓ 0.015 0.336 0.695 0.588 0.204
w/o object ✓ ✓ ✓ ✓ 0.024 0.387 0.709 0.859 0.432

Table 4: Ablation results of ProcTHOR dataset.

affordance place season size object KL Div. (↓) SD (↑) Sty. Sim. (↑) 3D IoU (↑)
w/ scale w/o scale

ours ✓ ✓ ✓ ✓ ✓ 0.042 0.618 0.749 0.729 0.368
w/o affordance ✓ ✓ ✓ ✓ 0.159 0.684 0.778 0.759 0.387

w/o place ✓ ✓ ✓ ✓ 0.011 0.526 0.666 0.768 0.409
w/o season ✓ ✓ ✓ ✓ 0.041 0.592 0.736 0.738 0.375
w/o size ✓ ✓ ✓ ✓ 0.049 0.447 0.807 0.437 0.152
w/o object ✓ ✓ ✓ ✓ 0.036 0.618 0.698 0.738 0.376

5.5 Ablation study
We conducted an ablation study to evaluate the effect of each factor.
Table 3 and table 4 show the results of the ablation study. The
results show that without considering affordances, although the
synthesized scenes perform well in terms of scene diversity and
style similarity, they do not maintain the affordances of the physical
environmentwell. If place, season, and object are not considered, the
performance of style similarity will be even worse. If the size is not
considered, the 3D IoU would be relatively poor. In our evaluation,
only some user input texts contain season and object information,
but it still had an impact on the performance. Given that we aim to
synthesize scenes that maintain the physical affordances and style
that meets user demands, it is necessary to consider all factors.

6 Discussion
6.1 Unlimited scenes for any physical

environment.
Our method enables unlimited scene synthesis according to user
demands and physical environments. In particular, if there is no
user input, the method still supports the scene synthesis based on
the physical environment. The sentence of user demand can be
unstructured and arbitrary. It may or may not contain a place, a
season, and user-specified objects. In the future, the user demand
could be inferred by LLM from a simple sentence, such as I want
to rest, according to the user’s preference. Our method enables
the scene synthesis for mixed reality in any physical environment
as ubiquitous embodied interfaces, making it possible for future
applications, such as virtual offices [21].

6.2 LLM-based prediction
Our method showcases the potential for using the LLM in mixed
reality scene synthesis with future possibilities for expansion. Since
our scene agent predicts object properties based on the LLM, the
results are affected by the LLM’s inference. In the future, more accu-
rate models can improve our method’s performance. Additionally,
our current prompts are text-based. In the future, incorporating
multimodel prompts including images of the virtual objects could
improve the prediction accuracy.

6.3 Diversity of objects
We collect a total of 350 virtual objects for our experiments. A large-
scale virtual object dataset helps synthesize scenes with diverse
styles, better meeting user demands and improving the 3D IoU
and affordance similarity between synthesized scenes and physical
environments. Additionally, our method retrieves virtual objects
from datasets, which can also be generated using example-based
[33, 59] or text-based generation methods [41, 61] in the future.

6.4 Virtual objects for physical walls
Our proposed method synthesizes scenes with virtual objects. Al-
though our method can add virtual obstacle objects for physical
walls when synthesizing scenes, we found that this is not very rea-
sonable as it surrounds users with obstacles in the virtual scenes.We
hope to create virtual scenes that offer a broad view for users when
they are in a limited physical space. Future research should focus
more on better virtual representations for physical walls (e.g., [56]).

7 Conclusion
In this paper, we propose a scene agent to synthesize virtual scenes
by observing the situated physical environment and demand of
users, which maintains the physical affordance and user-mentioned
style. The comparison results show that our method could syn-
thesize better scenes compared with baselines. Through the scene
agent, we hope to provide users with a ubiquitous embodied inter-
face, allowing users to access the immersive virtual environment
anytime and anywhere, ensuring security while utilizing the affor-
dance of the physical environment. This can be applied to many
areas, such as virtual offices, education, and games. In the future,
with the advancement of technologies such as large language mod-
els and single object generation, as well as the enrichment of virtual
object datasets, our method has the potential to synthesize better
scenes. Additionally, the user experience of synthetic scenes in
head-mounted displays can further verify the effectiveness of our
method. Since our method can be extended based on the similarity
of each factor, more factors (e.g., user preferences) can be added
to synthesize better scenarios. Moreover, our method can limit the
size of virtual objects to be larger than real objects to further ensure
the safety of users.
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