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Abstract. We explore how reconciling several foundation models (large
language models and vision-language models) with a novel unified mem-
ory mechanism could tackle the challenging video understanding problem,
especially capturing the long-term temporal relations in lengthy videos.
In particular, the proposed multimodal agent VideoAgent : 1) constructs a
structured memory to store both the generic temporal event descriptions
and object-centric tracking states of the video; 2) given an input task
query, it employs tools including video segment localization and object
memory querying along with other visual foundation models to inter-
actively solve the task, utilizing the zero-shot tool-use ability of LLMs.
VideoAgent demonstrates impressive performances on several long-horizon
video understanding benchmarks, an average increase of 6.6% on NExT-
QA and 26.0% on EgoSchema over baselines, closing the gap between
open-sourced models and private counterparts including Gemini 1.5 Pro.
The code and demo can be found at https://videoagent.github.io.
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1 Introduction

Understanding videos and answering free-form queries (question answering, con-
tent retrieval, etc.) remains a major challenge in computer vision and AI [1, 8,
9, 13, 15, 22, 23, 26, 31, 47]. Notably, much of the recent progress has achieved
by the end-to-end pretrained large transformer models, especially those are
developed upon the powerful large language models (LLMs) [3, 12, 22, 31], i.e.
multimodal LLMs. However, there have been increasing concerns about their
capabilities to handle long-form videos with rich events and complex spatial-
temporal dependencies [6,8–10,16,24,33]. Specifically, the computation, especially
memory cost could grow significantly and even become prohibitively expensive
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Fig. 1: A comparison between VideoAgent and end-to-end multimodal LLMs on video
question answering. Without a unified memory as a structured representation for
videos, end-to-end models could struggle with capturing basic spatial-temporal details,
especially when asked about objects on lengthy videos. While VideoAgent can utilize a
curated set of tools to perform sophisticated queries about the temporal memory (not
shown) and object memory, and respond with the correct answer.

when processing lengthy videos [26, 32]. Also, the self-attention mechanism could
sometimes struggle to capture the long-range relations [25]. These issues have
hindered further advancement in applying sophisticated foundation models to
video understanding.

More recently, thanks to the tool-use capabilities of LLMs [2,20], there has
been rapid development of a new class of multimodal understanding approaches:
multimodal agents [5,13,23,34]. The key idea is prompting LLMs into solving the
multimodal tasks by invoking several tool foundation models (object detection,
visual question answering, etc.) interactively. These methods have great potential
as they are mostly training-free and flexible with tool sets. However, extending
them to video understanding, especially on long-form videos is non-trivial.
Simply adding video foundation models as tools could still suffer from the
computation cost and attention limitation issues [12, 22]. Other research has
explored more sophisticated prompting strategies with better tools [14,30,37],
but they usually lead to complicated pipelines and the performances of these
methods still fail to match their end-to-end counterparts possibly due to a lack
of video-specific agent design.

In this paper, we introduce a simple yet effective LLM-based multimodal
tool-use agent VideoAgent for video understanding tasks. Our key insight is to
represent the video as a structured unified memory, therefore facilitating strong
spatial-temporal reasoning and tool use of the LLM, and matching/outperforming
end-to-end models, as shown in Fig. 1. Our memory design is motivated by
the principle of being minimal but sufficient: we’ve found that the overall event
context descriptions and temporally consistent details about objects could cover
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the most frequent queries about videos. As a result, we design two memory
components: 1) temporal memory, which stores text descriptions of each short (2
seconds) video segment sliced from the complete video; 2) object memory, where
we track and store the occurrences of objects and persons in the video. To answer
a query, the LLM will decompose it into several subtasks and invoke the tool
models. The unified memory is centered around by the following tools: caption
retrieval, which will return all the event descriptions between two query time
steps; segment localization, which retrieves a short video segment of a given
textual query by comparing it against the event descriptions within the temporal
memory; visual question answering, which answers a question given a retrieved
video segment; object memory querying, which allows sophisticated object
state retrieval from the object memory using SQL queries. Finally, the LLM will
aggregate the response of the interactive tool use and produce an answer to the
input query.

We conduct extensive evaluations of VideoAgent on several video understand-
ing tasks, including free-form query localization with Ego4D NLQ [4], generic
video question answering with WorldQA [46] and NExT-QA [35], and egocen-
tric question answering with EgoSchema [15], a recent benchmark focusing on
complex questions about long-form videos. We compare VideoAgent against
both the canonical end-to-end multimodal LLMs and other multimodal agents.
Results demonstrate the advantages of VideoAgent : on averaged increasing 6.6%
on NExT-QA and 26.0% on EgoSchema over baselines. Our further investigation
has examined the role played by the unified memory and tool selection.

To summarize, our contributions are as follows:
• We propose a unified memory mechanism to build structured representations

for long-form videos, including a temporal memory that stores segment-level
descriptions and an object memory that tracks the state of objects in the video.

• Based on the unified memory, we design VideoAgent , an LLM-powered mul-
timodal agent for video understanding. It decomposes the input task queries
and interactively invokes tools to retrieve information from the memory until
reaches the final response.

• We perform thorough evaluations of VideoAgent on multiple video understand-
ing benchmarks against both end-to-end multimodal LLMs and multimodal
agent baselines, demonstrating the effectiveness of VideoAgent . The additional
ablation analysis further confirms the crucial design choices we’ve made.

2 VideoAgent

2.1 Overview

We illustrate the proposed VideoAgent in Fig. 2. It begins with converting the
input video into a unified representation: temporal memory (Sec. 2.2) and object
memory (Sec. 2.3). For any incoming task, it interactively invokes tools to collect
information from the memory and the raw video segments, and ultimately pro-
duces a response (Sec. 2.4). The memory construction and task-solving (inference)
procedures are summarized in Algorithm 1 and Algorithm 2, respectively.
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Fig. 2: An overview of VideoAgent . Left: We first translate an input video into structured
representations: a temporal memory and an object memory; Right: the LLM within
VideoAgent will be prompted to solve the given task by interactively invoking tools
( ). Our considered tools primarily work with the memory (e.g . interacts with
the caption part of the temporal memory while looks up the object memory).

2.2 Temporal Memory MT

The temporal memory is designed to store overall event context descriptions and
features of videos. Given n video segments [v1, . . . , vn] sliced from a video V ,
we extract video segment caption scaption, video segment feature evideo and the
caption text embedding ecaption:

Video segment caption. We use a pretrained video captioning model called
LaViLa [49] to produce captions for each video segment. Specifically, it takes 4
frames from a 2-second segment to produce a short caption sentence. Typical
LaViLa captions can be "#C C cuts a wood with a wood cutter" and "#O
The man Y pushes a stroller on the road with his left hand", where "#C" and
"#O" is used to denote whether the caption sentence is about the camera wearer
or someone other than the camera wearer, therefore making LaViLa captions
effective in both egocentric and generic videos.

Video segment feature and caption feature. To obtain the video segment
feature, we adopt the video encoder of ViCLIP [28] to encode video segments. We
uniformly sampled 10 frames from each video segment as the input to ViCLIP,
and save the generated feature of the segment. For the caption feature, we choose
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Fig. 3: A visualization of object tracking and re-ID. 6 frames from a video are displayed
in order. The cup (light green box) and the milk bottle (pink box) are successfully
re-identified in different postures.

text-embedding-3-large1 offered by OpenAI to compute the embedding of the
video segment caption we obtained from LaViLa.

2.3 Object Memory MO

In addition to the general video event context stored in the temporal memory,
it is also crucial to explicitly capture the temporally consistent details: e.g . the
presence of people, objects, and the surroundings, etc. The intuition is that most
queries about videos are object(person)-related; therefore, the occurrences of
objects (and people) are tracked and stored in the object memory. Specifically,
object memory constitutes: 1) a feature table that connects object visual features
with unique object identifiers; 2) a SQL database that stores the object(person)
occurrence information across the video. Details on the construction can be found
below:
Tracking and re-identification. At the heart of our object memory construction
pipeline is tracking all the objects across the video, and re-identifying (re-ID)
previously appeared objects to eliminate object duplication. We pipeline an
object detection model RT-DETR [48] with a multi-object tracker ByteTrack [45]
for the object discovery and tracking part. This combination produces tracking
IDs, categories, and bounding boxes of the tracked object occurrences in the
video frames. In this phase, an object may have multiple tracking IDs due to
its multiple occurrences in the video. For the re-ID part, the key idea is to first
compute the features of all the object occurrences that have been discovered and
tracked, then group them into object IDs based on their feature similarities. More
specifically, the feature of an object occurrence (a tracking ID) is generated on

1 https://platform.openai.com/docs/guides/embeddings

https://platform.openai.com/docs/guides/embeddings


6 Fan and Ma et al.

object images cropped from 10 randomly sampled frames of the tracking ID; we
also follow a recent study [27] to use an ensemble of CLIP [19] and DINOv2 [18]
feature similarity to group tracking IDs into object IDs:

CLIP(i, j) =
1

1 + exp[−20 ∗ (cosine(eCLIP
i , eCLIP

j )− 0.925)]
,

DINOv2(i, j) =
1

1 + exp[−4.1 ∗ (cosine(eDINOv2
i , eDINOv2

j )− 0.5)]
,

sim(i, j) = 0.15 ∗ CLIP(i, j) + 0.85 ∗DINOv2(i, j),

where cosine(·, ·) denotes cosine similarity, eCLIP
i , eCLIP

j and eDINOv2
i , eDINOv2

j are
the CLIP and DINOv2 features of the tracking ID i and j, respectively. The
hyperparameters above (coefficients and biases) are tuned with a simple grid
search on EgoObjects [50]. More details about re-ID can be found in Appendix .
An example of how our tracking and re-ID pipeline manages to handle the
temporally discontinuous object presence in a kitchen can be found in Fig. 3.
Feature table. Assuming we’ve identified all objects (Object IDs) from the
video and their object occurrences (tracking IDs) have been confirmed as well.
We compute the CLIP feature fsid

object of object ID sid by averaging the CLIP
features of its tracking IDs, and store both the CLIP feature and the object ID
in a table. This allows us to use free-form language queries (e.g . “red cup”) to
search for objects in the video.
SQL database. Further, we build a relational database with three fields: object
ID sid, object category scategory, and indices of video segments {I1, . . . , It} where
the object has appeared. Later, this database can be queried using SQL code
and support sophisticated querying logic.

2.4 Tools and Inference

Compared to counterparts that offer a large collection of tools and usually result
in ambiguity in tool calling and complex tool-use pipeline, in VideoAgent , our
design principle is to provide a minimal but sufficient tool set with a focus on
querying the memory. We find this simplifies the inference procedures as well as
leads to better performances. We consider the following tools ( ):

Caption retrieval. The goal is to extract the captions from specified video
segments. Concretely, given the temporal memory MT , a start and an end
time step tstart and tend as arguments, the tool caption_retrieval(·) simply
retrieves these captions from the temporal memory directly. Due to the context
limit, the longest time window allowed is 15 segments, i.e. tend < tstart + 15.

Segment localization. The goal is to localize a video segment given a text
query squery. The tool segment_localization(·) will compare the text feature
of squery against the video features in the temporal memoryMT . Specifically, we
consider an ensemble of the query–video similarity (made possible by ViCLIP [28],
a pretrained video-text CLIP model) and the query–caption similarity (both text
features are computed by text-embedding-3-large offered by OpenAI). Top-5
video segments will be returned by this tool.
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Algorithm 1: Memory construction of VideoAgent .
Input: video V , video captioning model video_cap(·), video embedding

model video_emb(·), text embedding model text_emb(·), video
object tracker with re-identification object_track_reid(·)

Output: temporal memory MT , object memory MO

1 Initialize MT = ∅, MO = ∅;
2 Slicing video into n short segments V = [v1, v2, ...vn] (each segment spans

approximately 2 seconds);
3 for vi in [v1, v2, ...vn] do
4 scaption ← video_cap(vi);
5 evideo ← video_emb(vi);
6 etext ← text_emb(scaption);
7 MT =MT + (scaption, evideo, etext)

8 results ← object_track_reid(V );
9 for S in results do

10 sid, scategory, {I1, · · · Ik}, fsid
object ← S //See Sec. 2.3;

11 MO =MO + (sid, scategory, {I1, · · · Ik}, fsid
object);

12 returnMT , MO;

Visual question answering. The goal is to answer a given question
squestion about a short video segment at time ttarget, allowing to gather ex-
tra information that is not covered by the captions in temporal memory or
states in object memory. Concretely, we run Video-LLaVA [12] when the tool
visual_question_answering(·) is called.

Object memory querying. The goal is to perform sophisticated information
retrieval about objects that appeared in the video from the object memory MO.
Specifically, when calling the tool object_memory_querying(·) with a text query
squery (e.g . “How many red cups did I take out from the fridge?”), relevant object
descriptions will first be extracted from the query (e.g . “red cup”); next, we
compare the text feature of the descriptions (obtained from CLIP [19]) against
the object features from the feature table in MO to obtain the object IDs likely
correspond to the descriptions; finally, the LLM will write SQL code based on
both squery and the retrieved object IDs to query the database inMO and obtain
the needed information (segments that the objects appeared, etc.). After being
further processed by the LLM, a response to squery will be returned.

The inference procedure of VideoAgent is rather straightforward. Starting
with a history buffer h initialized with the input query q, VideoAgent decides
which tool to use, calls the tool with the produced arguments, appends the results
to the buffer, and repeats until it decides to stop or a maximum number of
steps is reached. Finally, a response will be made based on the content in the
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Algorithm 2: Inference of VideoAgent .
Input: task instruction q, temporal memory MT , object memory MO,

LLM LLM(·), a set of tools (see Sec. 2.4)
Output: response a

1 Initialize history h = [q];
2 Initialize inference step count c = 0;
3 while c < MAX_STEP do
4 action, input = LLM(h);
5 if action == "caption_retrieval" then
6 tstart, tend ← input;
7 results ← caption_retrieval(tstart, tend,MT );

8 else if action == "segment_localization" then
9 squery ← input;

10 results ← segment_localization(squery,MT );

11 else if action == "visual_question_answering" then
12 squestion, ttarget ← input;
13 results ← visual_question_answering(squestion, ttarget);

14 else if action == "object_memory_querying" then
15 squery ← input;
16 results ← object_memory_querying(squery,MO);

17 else if action == "stop" then
18 break;

19 h = h+ [(action, input, results)];
20 c = c+ 1;

21 return a = LLM(h);

history buffer. We provide an example of this procedure in Fig. 4. VideoAgent is
implemented using LangChain2 with GPT-4 as the main LLM.

3 Capabilities and Analysis

We evaluate VideoAgent on various long-form video understanding benchmarks
including EgoSchema (Sec. 3.1), Ego4D Natural Language Queries (Sec. 3.2),
WorldQA (Sec. 3.3) and NExT-QA (Sec. 3.4), and the performances are compared
against state-of-the-art end-to-end multimodal LLMs and multimodal agents.

3.1 EgoSchema

Overview. EgoSchema [15] is a benchmark that contains around 5000 questions
about long-form videos. The questions typically involve challenging video-level
2 https://www.langchain.com/

https://www.langchain.com/
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The description suggests that the 

boy is pretending to cook and the 

adults are likely supervising him. 

However, I need to check 

segment 9 to get more context.

Action: 

visual_question_answering

Action Input: (“what is the 

relationship between the boy 

and the adults", 9)

Results: Description: The video 

is about a man and a woman 

helping a little boy with a 

microwave oven. … Answer: 

The boy is seen playing with the 

microwave while the adults are 

standing behind him. …

The descriptions from both segments 

suggest that the adults are 

supervising the boy while he is 

playing. This suggests that the adults 

could be his parents or caregivers. 

Final Answer: The adults are likely 

the boy's parents or caregivers.

The most relevant segments are 

13 and 9 where a child is 

interacting or playing. I need to 

check these segments using the 

visual_question_answering tool 

to get more context.

Action: 

visual_question_answering

Action Input: (“what is the 

relationship between the boy 

and the adults”, 13)

Results:  Description: The 

video is about a little boy who 

is pretending to cook in the 

kitchen. … Answer: The video

does not provide any 

information about the 

relationship between the boy 

and the adults. However, it can 

be inferred that the adults are 

supervising the boy as he 

plays with the toy kitchen set.

I need to find the segments 

where the boy and the adults are 

mentioned together. I will use 

the segment_localization tool to 

find these segments.

Action: segment_localization

Action Input: "boy and adults"

Results: There are 28 segments 

in total, ranging from 0 to 27. 

The most relevant segments are: 

{13: '#O a child X interacts with 

the', 9: '#O A child X plays with 

a doll on the floor’, …, 24: '#C C 

dialogues with person'}

What is the relationship 

between the boy and the 

adults?

Video

VideoAgentQuestion

Fig. 4: An examples of the VideoAgent inference. Given a question, VideoAgent executes
multiple tool-use steps until it reaches the answer. The yellow, red, and blue blocks in
each step denote the chain of thought, action to be taken, and results of tool use.

Table 1: Accuracy results on the EgoSchema dataset. Top row: results on the full
EgoSchema test set; Bottom row: results on the EgoSchema 500 subset.

EgoSchema (full set)
FrozenBiLM InternVideo mPLUG-Owl LLoVi Gemini 1.5 Pro VideoAgent

26.9 32.0 30.2 50.3 63.2 60.2
EgoSchema (subset, 500 questions)

SeViLA Video-LLaVA mPLUG-Owl LLoVi ViperGPT VideoAgent
25.8 36.8 33.8 51.8 15.8 62.8

reasoning such as “describe the general activity in the room and how the different
characters and their actions contribute to this environment”. VideoAgent is both
tested on the full 5031-question test set and the official 500-question subset. The
comparative methods include SeViLA [39], Video-LLaVA [23], mPLUG-Owl [38],
ViperGPT [40], LLoVi [41], FrozenBiLM [36], InternVideo [29] and Gimini 1.5
Pro 3.
Main results. In Tab. 1, VideoAgent significantly outperforms other state-of-the-
art video understanding models such as SeViLA and Video-LLaVA to nearly 30
percent, achieving an accuracy of 62.8 on the 500 questions. Besides, VideoAgent
achieves 60.2 on the full test set, closing to the performance of Gemini 1.5 Pro.
The strong performance of VideoAgent on EgoSchema proves that VideoAgent
can solve complex video tasks on long-form videos better than multimodal LLMs
and agent counterparts.

3 https : / / storage . googleapis . com / deepmind - media / gemini / gemini _ v1 _ 5 _
report.pdf

https://storage.googleapis.com/deepmind-media/gemini/gemini_v1_5_report.pdf
https://storage.googleapis.com/deepmind-media/gemini/gemini_v1_5_report.pdf
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Table 2: Comparison between supervised baselines and VideoAgent with different tool
implementation variants on Ego4D NLQ validation set.

EGO4D NLQ Val.
Method R1@0.3 R1@0.5 R5@0.3 R5@0.5

Supervised
2D-TAN 5.04 2.02 12.89 5.88
VSLNet 5.45 3.12 10.74 6.63

GroundNLQ 27.20 18.91 54.42 39.98
Zero-Shot (VideoAgent with segment_localization variants)

ViCLIP 8.40 3.97 17.36 8.50
LaViLa 10.07 4.19 22.53 10.58
Ego4D 16.41 6.96 31.96 15.01

LaViLa+ViCLIP 11.13 4.76 25.31 12.08
Ego4D+ViCLIP 17.39 7.47 33.05 15.73

Unified memory facilitates stronger reasoning. The questions in EgoSchema
are rather complex in terms of the underlying reasoning about the lengthy
videos. Therefore, strong spatial-temporal reasoning is essential. What canonical
approaches like multimodal LLMs (Video-LLaVA, etc.) or counterpart multimodal
agents (ViperGPT) have in common is the lack of a unified memory as a structured
representation for the videos. Without such representation, the reasoning has
to be either implicit (as in end-to-end models) or quite limited by the available
tools (as in ViperGPT), results in worse performances than ours.
Holistic video understanding with flexible tool-use. Given a typical
question such as "how did c’s behavior evolve throughout the video, and what
stages of engagement with the tasks can you identify?", it is hard to derive a
descriptive text from the question and use it for video grounding, which is a
common way for multimodal LLMs (SeViLA, etc.) to select limited key frames for
the visual input. However, apart from the segment_localization, VideoAgent
can also use caption_retrieval to grab the main context of the video and
decide which segments are critical, therefore tackling this obstacle.

3.2 Ego4D Natural Language Queries

Overview. The task of Ego4D Natual Language Queries [4] is to locate a
temporal window (9 seconds on average) in the video (9 minutes on average) that
can best answer a query. VideoAgent is evaluated zero-shot with different variants
of the segment_localization tool using 1) ViCLIP visual features only; 2)
textual features based on LaViLa captions or Ego4D ground-truth narrations; 3)
a combination of both textual features and visual features (LaViLa+ViCLIP and
Ego4D+ViCLIP, the ensemble weights can be found in Appendix ). The methods
for comparison include 2D-TAN [44], VSLNet [43], and GroundNLQ [7], which
ranked first in Ego4D NLQ challenge 2023.
Main results. Tab. 2 presents the results on the validation set of Ego4D NLQ. A
combination of both textual features and visual features in VideoAgent results in
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Table 3: Comparison between two zero-shot approach: VideoAgent and LifeLong-
Memory [30] on Ego4D NLQ. *The performances of LifelongMemory on R1@0.3 and
R5@0.3, although not reported, must be less or equal than R@0.3.

Method R1@0.3 R5@0.3 R@0.3
LifeLongMemory(Ego4D) * * 15.99
LifeLongMemory(LaViLa) * * 9.74

VideoAgent (Ego4D) 16.41 31.96 -
VideoAgent (LaViLa) 10.07 22.53 -

Table 4: Results on WorldQA.

WorldQA
Method Video-LLaMA Video-ChatGPT Video-LLaVA GPT-4V VideoAgent

Open-Ended 26.80 28.51 30.15 35.37 32.53
Multi-Choice 4.81 13.25 35.25 32.83 39.28

better video grounding. Although having a performance gap with the supervised
GroundNLQ, VideoAgent outperforms 2D-TAN and VSLNet and achieves good
performance considering its simple architecture and zero-shot characteristics.
Caption features vs. visual features. It can be inferred from the comparison
among ViCLIP, LaViLa and Ego4D that it is more effective to use the caption–
query similarities for video grounding than using video–query similarities. Higher
quality captions (LaViLa→Ego4D) will also lead to better performance.
Similarity-based vs. LLM-based localization. Tab. 3 presents a comparison
between VideoAgent and LifeLongMemory [30]. Given a query, LifeLongMemory
uses GPT-4 to digest and refine the captions of the video segments, and outputs a
list of candidate windows to the query based on the captions selected by the LLM.
LifeLongMemory adopts a customized R@0.3 metric to calculate the proportion
of the predictions where at least one out of all the LLM-generated candidate
windows achieves an IoU greater than 0.3 with the ground-truth window. It can
be inferred from Tab. 3 that given the same caption type (Ego4D or LaViLa), the
performance of VideoAgent on R1@0.3 where only 1 candidate is allowed for a
query, has already surpassed the performance of LifeLongMemory on R@0.3. By
providing 5 candidates for a query, the performance of VideoAgent will exceed
LifeLongMemory by more than two-fold. This indicates that similarity-based
segment localization is more effective than the LLM-based segment localization.

3.3 WorldQA

Overview. WorldQA [46] is a challenging video understanding benchmark that
focuses on using world knowledge and long-chain reasoning to understand a
long-form video (typically a 5-minute movie). We compared VideoAgent with
Video-LLaMA [42], Video-ChatGPT [14], Video-LLaVA [12] and GPT-4V [17]
on both generation-based Open-Ended QA and Multi-Choice QA.
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Table 5: Results on NExT-QA. We compare baselines on both the original full set as
reference and the subset (600 questions) due to the evaluation cost.

NExT-QA
Method Temporal Causal Descriptive Average

Val. Set
InternVideo 43.4 48.0 65.1 49.1

SeViLA(zero-shot) 61.3 61.5 75.6 63.6
TCR(pre-training) - - - 66.1

Val. Subset (600)
ViperGPT 17.0 19.0 26.5 20.8

mPLUG-Owl 36.0 41.0 52.5 43.2
Video-LLaVA 42.0 53.5 65.0 53.5

SeViLA(zero-shot) 56.0 66.5 70.0 64.2
VideoAgent 60.0 76.0 76.5 70.8

Main results. Tab. 4 shows that VideoAgent surpasses existing open-source
multimodal LLMs by a significant margin on both Open-Ended QA and Multi-
Choice QA. This can be mainly contributed to the rich world knowledge and the
intrinsic reasoning ability of the LLM agent. Moreover, the better accuracy of
VideoAgent compared to that of GPT-4V on Multi-Choice QA demonstrates the
effectiveness of the structured memory in understanding long-form videos. On
the open-ended QA, GPT-4V achieves better results than VideoAgent, mainly
because it has video frames as visual conditions for generating better responses.

3.4 NExT-QA

Overview. NExT-QA [35] is a benchmark containing temporal, causal and
descriptive multi-choice questions about videos. The accuracy acc is computed
for each type of the questions. For the reason of cost, we randomly sampled 200
questions for each type and obtained a subset of 600 questions in total to test
the performance of VideoAgent . Methods directly compared with VideoAgent
on this subset include ViperGPT [23], mPLUG-Owl [38], Video-LLaVA [12]
and SeViLA [39]. The results of three representative methods InternVideo [29],
SeViLA [39] and TCR [10] on the full validation set are also provided.
Main results. Tab. 5 shows the main results on NExT-QA. In all, VideoAgent
achieves the strongest performances among all comparative methods. Particularly,
on the challenging causal questions that require strong temporal understanding
and reasoning, VideoAgent outperforms SeViLA, one of the state-of-the-art models
on NExT-QA, for nearly 10 percent. Besides, the comparison between VideoAgent
and Video-LLaVA, which is used by the video_question_answering tool,
indicates that our VideoAgent allows such multimodal LLM to work better as
part of the multimodal tool-use agent than being used alone.
Settings for ablation studies. We extract 50 questions for each question type
from the 600-question subset, resulting in a subset of 150 questions in total, to
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Table 6: The effectiveness of different components of VideoAgent on NExT-QA subset.
✓ and ✗ indicates whether or not the tool is included. "w/ re-ID" uses an object memory
constructed with re-ID, while "w/o re-ID" uses an object memory that might include
duplicated objects.

Type VQA Grounding Captions Database Tem. Cau. Des. Avg.
1 GPT-4V ✓ ✓ w/ re-ID 64.0 78.0 82.0 74.7
2 Video-LLaVA ✓ ✓ w/ re-ID 60.0 74.0 80.0 71.3
3 Video-LLaVA ✓ ✓ ✗ 46.0 64.0 78.0 62.7
4 ✗ ✗ ✓ w/ re-ID 48.0 52.0 68.0 56.0
5 ✗ ✗ ✓ w/o re-ID 46.0 46.0 54.0 48.7
6 ✗ ✗ ✓ ✗ 34.0 46.0 42.0 40.7

evaluate the contributions of different components in VideoAgent as ablation
studies. Tab. 6 shows the performances of 6 ablations of VideoAgent , with each
equipped with a unique set of tools among visual question answering,
segment localization, caption retrieval and object memory querying, denoted
as ‘VQA’, ‘Grounding’, ‘Captions’ and ‘Database’ in Tab. 6.
The necessity of caption retrieval. The caption retrieval tool lays the
foundation for VideoAgent since it provides the basic information about the main
context of the video. With caption retrieval only, VideoAgent of type 6 achieves
an average result of 40.7 already, which is comparable to the performance 43.2 of
the end-to-end video-language model mPLUG-Owl on the 600-qeustion subset.
Object memory boosts all question types. The comparison between type
2 and 3 indicates that a reliable object memory can substantially help with
temporal and causal questions since it offers crucial temporally consistent object
information across video segments, facilitates object-related temporal localization,
and enhances the agent’s understanding of the video. The performance gap
between type 4 and type 5 suggests that with the object re-ID algorithm, the
performance on descriptive questions (mostly about quantity) will be significantly
improved, validating the effectiveness of object re-ID.
VQA and segment localization offer the most bonus. By comparing type
3 and 6, it can be seen that simultaneously adding visual question answering
and segment localization boost the caption-only VideoAgent by 22 percent on
the average performance, compared to 15.3 percent boost by adding the object
memory (inferred from type 4 and 6). Moreover, by switching from Video-LLaVA
to GPT-4V in visual question answering (type 1 and 2), the performance will
be raised by 3.4 percent, indicating that accurate visual details identified by the
powerful VQA model will aid in better question answering performance.

4 Related Work

4.1 Multimodal LLMs for video understanding

Since LLMs have demonstrated an excellent ability to process and understand
natural language [3, 17], several recent works have explored extending them



14 Fan and Ma et al.

to multimodal setting, especially for images and videos [1, 11, 12, 21, 26, 47].
LaViLa [49] manages to create a massive and diverse set of text as automatic
video narrators for video-text contrastive representation pretraining. Video-
LLaMA [42] enables video comprehension by capturing the temporal changes in
visual scenes and integrating audio-visual signals for better cross-modal training.
As we discussed in Sec. 1, many of these multimodal foundation models could
struggle with long-form video understanding. To remedy this, LSTP [31] utilize
spatial and temporal sampler modules to extract optical flow based temporal
features and aligned spatial relations from the video to achieve long-form video
understanding; Gemini [26] scales the multimodal models to longer videos with
tens of thousands of TPUs and massive private video-text datasets. Albeit the
prompt progress made by these end-to-end models, prohibitive computation
costs and the inherent limitation of the transformer on long-form videos remain
significant in applying these end-to-end learned multimodal foundation models
to video understanding.

4.2 Multimodal tool-use agents for video understanding

Another line of research focuses on augmenting LLMs with a set of tools to
solve multimodal tasks without costly training. In particular, LLMs within these
multimodal agents are prompted to produce a step-by-step plan to address
the original task, and interactively invoke several multimodal foundation models
(“tools”), e.g . captioning, VQA, etc. VisProg [5] pilots this direction by equipping
the GPT-3 planner with a large collection of visual tools, solving complex real-
world visual reasoning problems. Applying these agents to video understanding
requires careful design as many of the tool models do not guarantee generalization
to videos. LifeLongMemory [30] employs natural language video narrations to
create a text-based episodic memory and prompt LLMs to reason and retrieve
required information for the downstream task. DoraemonGPT [37] introduces
a sophisticated prompting strategy with Monte Carlo Tree Search (MCTS) to
invoke both tools and a structured memory to solve video understanding tasks.
These multimodal agents have great potential but so far they mostly struggle with
attaining on-par performances to their end-to-end foundation model counterparts
on common benchmarks, likely due to the complicated pipelines and lack of
video-specific design.

5 Conclusions

We’ve presented VideoAgent , a multimodal tool-use agent that reconciles several
foundation models with a novel unified memory mechanism for video understand-
ing. Compared to end-to-end multimodal LLMs and tool-use agent counterparts,
VideoAgent adopts a minimalist tool-use pipeline and does not require expensive
training, while offering comparable or better empirical results on challenging
long-form video understanding benchmarks including EgoSchema, Ego4D NLQ,
WorldQA and NExT-QA. Possible future direction includes more exploration of
real-world applications in robotics, manufacturing, and augmented reality.
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