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Abstract. A unified model for 3D vision-language (3D-VL) understand-
ing is expected to take various scene representations and perform a wide
range of tasks in a 3D scene. However, a considerable gap exists between
existing methods and such a unified model, due to the independent ap-
plication of representation and insufficient exploration of 3D multi-task
training. In this paper, we introduce PQ3D, a unified model capable
of using Promptable Queries to tackle a wide range of 3D-VL tasks,
from low-level instance segmentation to high-level reasoning and plan-
ning. This is achieved through three key innovations: (1) unifying vari-
ous 3D scene representations (i.e., voxels, point clouds, multi-view im-
ages) into a shared 3D coordinate space by segment-level grouping, (2)
an attention-based query decoder for task-specific information retrieval
guided by prompts, and (3) universal output heads for different tasks to
support multi-task training. Tested across ten diverse 3D-VL datasets,
PQ3D demonstrates impressive performance on these tasks, setting new
records on most benchmarks. Particularly, PQ3D improves the state-of-
the-art on ScanNet200 by 4.9% (AP25), ScanRefer by 5.4% (acc@0.5),
Multi3DRefer by 11.7% (F1@0.5), and Scan2Cap by 13.4% (CIDEr@0.5).
Moreover, PQ3D supports flexible inference with individual or combined
forms of available 3D representations, e.g ., solely voxel input.

Keywords: 3D Vision-Language · 3D Scene Understanding · Visual
Reasoning

1 Introduction

Recent advancements in embodied artificial intelligence have emphasized the
importance of connecting 3D scene understanding with natural language [21,32,
34, 52, 79]. This step is crucial for embodied agents to understand and execute
human instructions in real-world scenarios [5,59]. In recent years, numerous tasks
and datasets for benchmarking 3D scene understanding with languages have
been proposed, including 3D semantic segmentation [60], 3D vision-language
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Prompt: [Navigate to the door]

Prompt: [Chair]

Prompt: [Cabinet to 
the left of the TV]

Prompt: [I want to 
watch Super Bowl] 

Prompt: [Describe this object] [Loc]
PQ3D: This is a trash can next to a 
working desk

Prompt: [How many computer 
screens are on the desk?]
PQ3D: There are two screens

Prompt: [            ]

Prompt: [Organize this room]
PQ3D: 
1. Clean the floor by broom.
2. Tidy up the desk.
3. Throw papers to trash can.
4. Empty trash can.

Prompt: [A table near the sofa] Task Name

      Instance Segmentation        Visual Grounding          Question Answering 

      Dense Captioning                 Task Planning                Embodied Navigation

Prompt Type
Text Prompt: [txt] Location Prompt: [loc] Image Prompt: [img]

Fig. 1: PQ3D is a unified model for 3D vision-language understanding, capable of
taking various prompts (object categories, referring sentences, images, locations) to
perform a wide range of tasks in a 3D scene, including instance segmentation, visual
grounding, question answering and dense captioning. Remarkably, PQ3D can take a
novel prompt type unseen during training, e.g ., an image sketch of a vase, to locate the
related object in the scene. If further instruction-tuned with a large language model
and plugged into an embodied agent, PQ3D can also plan a complex task and navigate
the agent to desired objects.

(3D-VL) reasoning (referring [1, 2, 8, 37, 74], question answering [3, 49, 76], and
captioning [12]), and open-vocabulary 3D understanding [25,27,39,64].

The state-of-the-art (SOTA) approaches typically address these tasks utiliz-
ing specific scene representations [3, 10,26,28,48,62]. These representations can
all be derived from RGB-D streams, each with unique advantages and draw-
backs. For instance, voxels offer a uniform, grid-like structure ideal for instance
segmentation [60,62] but struggle to capture fine geometric details. Point clouds
provide detailed spatial information crucial for visual grounding [10,79], but they
miss texture details. Multi-view images include a rich visual context beneficial
for open-vocabulary scene understanding [53,64] but lack accurate 3D location.
The full potential of combining all these representations for holistic scene un-
derstanding has not been well studied. Additionally, several works in 3D-VL
reasoning explored multi-task training [7, 13] and pretraining [73, 79] to seek
mutual benefits from related tasks; however, they still require an off-the-shelf
3D mask proposal module. Thus, despite substantial progress, there is still a
gap toward a unified model achieving comprehensive 3D-VL understanding,
from low-level instance segmentation to high-level reasoning and planning.

We expect such a unified model for 3D scene understanding to integrate
various scene representations and select appropriate features based on specific
task instructions. However, two significant challenges exist: Firstly, these differ-
ent scene representations have varying granularities, making it difficult to unify
them in a single feature space. Secondly, there have been limited research efforts
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regarding developing a unified training paradigm that can accommodate 3D-VL
tasks at different levels with diverse input instructions and output formats.

To address these challenges, we introduce PQ3D, a unified model using
Promptable Queries to concurrently manage various 3D scene representations,
prompts, and outputs in numerous 3D-VL tasks, as depicted in Fig. 1. An
overview of the proposed PQ3D model is shown in Fig. 2(c), featuring three
key innovations: (1) We unify dense point cloud features with multi-scale voxel
features and multi-view image features into a shared 3D coordinate space. This
process involves the unsupervised grouping of 3D points into larger segments and
pooling features to the segment level, significantly reducing the number of points
and facilitating training. (2) A novel attention-based query decoder is introduced
that progressively retrieves task-specific information from aligned scene features
under the guidance of task prompts. (3) Each query is processed through three
universal output heads to predict an instance mask, a task-relevance score, and
a sentence; these are then combined to produce the required task outputs.

We conduct extensive experiments on ten 3D-VL datasets, including Scan-
Net200 [60] / Replica [63] for instance segmentation, ScanRefer [8] / ReferIt3D [2]
/ Multi3DRef [74] for visual grounding, ScanQA [3] / SQA3D for question-
answering, Scan2Cap [12] for dense captioning, and ObjNav from CortexBench [50]
for embodied navigation. The proposed PQ3D achieves impressive results across
these tasks, setting new records on most tasks as shown in Fig. 2(a). For example,
our model boosts the state-of-the-art on ScanNet200 by 4.9% (AP25), ScanRe-
fer by 5.4% (acc@0.5), Multi3DRef by 11.7% (F1@0.5), and Scan2Cap by 13.4%
(CIDEr@0.5). More importantly, PQ3D is the first unified model capable of
handling all these tasks simultaneously. The proposed model also shows zero-
shot capability with novel prompt types; for instance, we can prompt it with an
image sketch to locate all related objects in a scene as in Fig. 1.

Our main contributions can be summarized as follows:
– We introduce PQ3D, a unified model adept at solving a broad spectrum of

3D-VL tasks with promptable queries. The tasks range from low-level instance
segmentation to visual grounding, and high-level reasoning and planning.

– Our model uniquely aligns voxels, point clouds, and multi-view images into a
shared 3D space and employs an attention-based query decoder to adaptively
extract task-relevant features guided by prompts, offering a flexible approach
to model all 3D-VL tasks.

– In our extensive experimentation across various 3D-VL tasks, PQ3D not only
achieves competitive results but also sets new records in most of the tasks.

2 Related Work

2.1 3D Vision-language Learning

In recent times, there has been a surging interest in the field of 3D vision-
language (3D-VL) learning. 3D-VL tasks establish a vital connection between
the physical world and natural language, contributing to the development of
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Fig. 2: Comparison between PQ3D and other models. (a) When comparing PQ3D
to other state-of-the-art (SOTA) methods, PQ3D demonstrates superior performance
on most tasks. (b) Previous models have been designed for specific tasks and repre-
sentations, often limiting the potential for developing a unified model. (c) Our PQ3D
can flexibly accommodate various input representations, effectively addressing a wide
range of tasks.

embodied intelligence [37,79]. In this emerging domain, objects refer [1,2,8,74],
question answering [3, 71], and dense captioning [12] tasks are introduced to
evaluate natural language grounding concerning 3D object properties and rela-
tionships. Additional tasks include embodied question answering [49] and navi-
gation [61], which explore models’ capabilities within an embodied environment.

Numerous models have been proposed to tackle these benchmarks in task-
specific ways. MVT [33], ViL3DRel [10], and ViewRefer [26] perform 3D visual
grounding by explicitly incorporating spatial relation information into their de-
signs. While these endeavors [10, 26, 33, 36, 48, 66, 70, 75] have demonstrated im-
pressive results, they often require specialized model architectures tailored to
specific tasks. In contrast, our model is unified, performing multiple tasks in one
model. In a recent line of research, several works [11,30,32] explore 3D instruc-
tion tuning to leverage the power of large language model (LLM) to enhance
3D reasoning. PQ3D can further benefit these models by providing a robust 3D
scene encoding module guided by language, which can be seamlessly integrated
into these instruction tuning pipelines.

2.2 Query-based Model

Query-based models have gained prominence in 2D perception [20,22,29,31,78].
DETR [78] has allowed queries to attend to visual features from the back-
bone network dynamically, enabling object detection without the need for post-
processing techniques like NMS [22,78]. Building upon this concept, subsequent
works such as [14, 22, 29] have extended the query-based approach to universal
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image segmentations, where queries are employed to match pixel-level features
and generate high-quality masks. Additionally, the use of queries initialized from
language has led to advancements in referring segmentation [17,65].

More recent literature has further demonstrated the potential of query-based
models in achieving unified understanding [35,43,69,80]. For instance, Perceiver-
IO [35] leverages queries to extract information from multi-modal features, while
XDecoder [80] formulates multiple vision-language tasks within a generalized de-
coding framework. However, in the context of 3D vision-language understanding,
a query-based paradigm for handling multiple tasks is still lacking.

2.3 Promptable Segmentation

The concept of promptable segmentation, as presented in the SAM framework [40],
centers around the utilization of prompts to direct the process of segmentation.
These prompts can manifest in diverse forms, such as foreground/background
points, approximate bounding boxes or masks, and free-form text, which furnish
guidance on the desired elements to be segmented in an image [40,46,47].

Promptable segmentation is intimately linked with open-vocabulary learn-
ing. Previous studies such as OWL-ViT [51] and OVR-CNN [72] have lever-
aged contrastive learning with extensive image-text pairs to demonstrate object
detection generalization capabilities [51, 72, 77]. OpenSeg [24] and OVSeg [45]
extend open-vocabulary detection from the object level to pixel-level segmenta-
tion [24,42,45,56,67,68]. In the field of 3D vision, methods like OpenMask3D [64]
and OpenScene [53] have used 2D features to accomplish zero-shot segmentation.
The PLA model [18] harnessed captions to align vision and language for novel-
class instance segmentation. Our work takes cues from these existing method-
ologies, leveraging the benefits of prompting images, text, and point-based data
to achieve open-vocabulary promptable segmentation.

3 Method

In this section, we present PQ3D, which consists of three main modules: Task
Prompt Encoding, 3D Scene Encoding, and Prompt-guided Query Learning, as
depicted in Fig. 3. Next, we will explain the details of each module.

3.1 Task Prompt Encoding

In various 3D-VL tasks, a task prompt can be of diverse formats, including ob-
ject categories, referring sentences, questions, 3D bounding boxes, 3D locations,
images, etc. Diverse prompt formats are one of the key obstacles to building a
unified model for 3D-VL understanding. However, we figured out that all these
diverse prompts can be divided into three categories: textual, visual, and nu-
merical. We encode the textual and visual prompts by the pre-trained CLIP
model [57], which allows us to train using a text prompt and perform infer-
ence using an image prompt in a zero-shot manner. Numerical prompts, e.g .,
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Fig. 3: The model architecture of PQ3D, which consists of Task Prompt Encoding,
3D Scene Encoding, and Prompt-guided Query Learning modules. In prompt
encoding, task prompts in diverse formats are projected to a shared feature space. In
scene encoding, point clouds, voxel grids, and multi-view images of a scene are first
encoded by corresponding encoders and then aligned into a shared 3D coordinate space.
The prompt-guided query learning module takes in zero-initialized instance queries and
progressively retrieves task-relevant information from aligned scene features under the
guidance of task prompts. Finally, each updated instance query is fed into three output
heads to predict an instance mask, a task-relevance score, and a sentence.

3D bounding boxes and locations, are projected by fully-connected layers into
the same feature space as CLIP. With such unification, we do not distinguish
different prompt formats anymore and this design enables the model to transfer
knowledge between different prompts. The encoded task prompt is denoted as
t ∈ RT×D, T is the number of prompt tokens, and D is the hidden dimension.

3.2 3D Scene Encoding

There are three widely used representations for 3D scenes: point clouds, voxel
grids, and multi-view images, which have their unique advantages in different
tasks. For example, voxels offer a uniform, grid-like structure ideal for instance
segmentation [60,62], point clouds provide spatial information crucial for visual
grounding [10,79], and multi-view images include a rich visual context beneficial
for open-vocabulary learning [53,64].

To simultaneously handle various tasks in a 3D scene, we aim to achieve seam-
less unification of these representations. To accomplish this, we first group the
dense 3D points into larger segments through unsupervised graph-based segmen-
tation and masks [23]. The grouped segments are much fewer than the original
points, making the training feasible by reducing the number of tokens in cross-
attention. Then, we encode these scene representations by the corresponding
encoders and pool the features to the segments in total of M .
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Point Cloud To process the point cloud of a 3D scene, we first partition the
full point cloud into the pre-generated segments. For each segment, we sample
1,024 points, normalize their coordinates into a unit sphere and then feed them
into a pre-trained PointNet++ backbone [54, 55] to obtain the point features,
denoted by P = {p0,p1, ...,pM} ∈ RM×D, where M is the number of segments.
Voxel To extract voxel features, we follow Mask3D [62] to first discretize the 3D
scene into voxels and then channel these voxels into a sparse convolutional U-net
backbone. The sparse U-Net includes downsampling and upsampling stages to
extract hierarchical information from the given scene. The extracted features of
each voxel are remapped to the pre-generated segments and average-pooled to
obtain segment-level features. We also apply a linear layer to project the voxel
features to the hidden dimension D, denoted by V = {v0,v1, ...,vM} ∈ RM×D.
Multi-View Image Given multi-view images of a 3D scene, we follow Open-
Scene [53] to get the multi-view image features for each 3D point. We first com-
pute per-pixel embeddings for each image using the pre-trained OpenSeg [24]
segmentation model. We then back-project each 2D pixel into 3D point and
aggregate the features from the associated multi-view pixels. Finally, we ob-
tain the segment-level image features by simply average pooling, denoted as
I = {i0, i1, ..., iM} ∈ RM×D.

The final 3D scene representation is composed of these three segment-level
features {V, I,P}. Besides, we add positional encoding to segment-level features.
In our implementation, We compute the average coordinate across all points
within each segment as its 3D location, which is further encoded by an MLP into
the same hidden dimension, denoted as L = {l0, l1, ..., lM} ∈ RM×D. Unifying all
features to the pre-generated segments is crucial for instance queries to effectively
interact with these features in query learning.

3.3 Prompt-guided Query Learning

We propose a novel Transformer-like decoder to instruct the instance queries
to assimilate scene and prompt information. This process begins with a set of
instance queries Q0, whose values are initialized to zeros and positions are sam-
pled via Farthest Point Sampling from 3D points [64]. Within the decoder layer
l, the instance queries Ql retrieve task-relevant information by first attending to
the scene features {V, I,P} in parallel and then the task prompt t, followed by
a spatial self-attention as [79]. All attention layers are followed by the forward
layer (FFN). The spatial self-attention utilizes location information from the
coordinates of the farthest sampled points. Formally, we have:

Q
′

l = FFN(Norm(Ql +
∑

F∈{V,I,P}

MaskedCrossAttn(Ql,F))), (1)

Q
′′

l = FFN(Norm(Q
′

l +CrossAttn(Q
′

l, t))), (2)

Ql+1 = FFN(Norm(SpatialSelfAttn(Q
′′

l ))). (3)

Following [14,62], we adopt masked attention when cross-attending to the scene
features, which restricts the attention to localized features centered around the
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query for faster convergence and improved performance. To support flexible in-
ference when only some representations are available, we randomly drop out some
scene features with rate 0.6 in masked-attention computation during training.
After N decoder layers, we expect the final instance queries Q to have collected
enough information for solving the given task.

3.4 Output Heads and Losses

We adopt the following three output heads to support a variety of 3D-VL tasks:
Mask head For each instance query, we apply a mask head to predict a binary
mask over the pre-generated segments. Formally, we have:

pmask = σ(fs(V + I+P) · fq(Q)T ) (4)

where fs, fq are projection layers. The dimension of fs(V+ I+P) is M ×D and
fq(Q) is Q×D, where M,Q, and D represent the number of segments, queries,
and hidden dimensions, respectively. The multiplication of fs and fq followed
by sigmoid function σ results in a binary mask in M × Q dimension. During
training, we follow [62, 78] to apply Hungarian Matching between queries and
ground-truth objects, then calculate the mask loss:

Lmask = λbceLbce + λdiceLdice (5)

where Lbce is the binary cross-entropy loss and Ldice is the Dice loss [14,29,64].
Grounding head We apply a grounding head fg to predict if an instance query
is related to the task. fg is implemented as linear projection layers. Formally, we
have:

pgrd = σ(fg(Q)) (6)

During training, if grounding labels are provided as supervision, we calculate a
binary cross-entropy loss as the grounding loss Lgrd.
Generation head We choose the decoder of a pre-trained T5-small [15, 58] as
the generation head to generate a text response, using all instance queries as the
encoded inputs. During training, if text responses are provided as supervision for
dense caption and QA task, we calculate the cross-entropy loss as the generation
loss Lgen.

During training, the total loss is the weighted sum of losses from the above
three heads:

Ltotal = λmaskLmask + λgrdLgrd + λgenLgen (7)

4 Experiments

4.1 Experimental setting

Training Datasets Tab. 1 shows a summary of the datasets used for the multi-
task training of PQ3D. Notably, we combine eight datasets for training, includ-
ing about 662K training samples for various tasks.
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Training Details The training procedure consists of two stages. In the first
stage, we train the model with instance segmentation alone on ScanNet200 for
800 epochs. At this stage, instance segmentation is trained with a classification
head on instance queries, instead of prompting object categories. At the second
stage, we continue train the model on the full training set using the training
objectives in Eq. (7) for 50 epochs. We set the hidden dimension D to 768, and
query decoder layer N to 4. We utilize the AdamW optimizer with a learning
rate of 1e-4, batch size of 16, β1 = 0.9, and β2 = 0.98. The loss balance weights
λmask, λgen are set to 1, and λgrd is set to 10. To further demonstrate the capa-
bility of PQ3D, we also transfer it to an embodied agent for object navigation
using the ObjNav task from CortexBench [50] and instruction-tune it with a
large language model (LLM) Vicuna-7B using the instruction-following dataset
from [32]. The whole training process is conducted on four NVIDIA A100 GPUs.
More details can be found in the appendix.

Table 1: Datasets for unified training. The size of ScanNet200 is #scenes (1202)×
#categories (200).

Dataset Task Prompt Heads Size

ScanNet200 [60] instance segmentation category mask,grounding 240K
ScanRefer [8] visual grounding sentence grounding 37K

Nr3D [2] visual grounding sentence grounding 119K
Sr3D [2] visual grounding sentence grounding 66K

Multi3DRefer [74] visual grounding sentence grounding 44K
ScanQA [3] question answering question grounding,generation 30K
SQA3D [49] question answering question generation 89K

Scan2Cap [12] dense captioning 3D box generation 37K

Total - - - 662K

4.2 Quantative Results

Instance segmentation on ScanNet200 As shown in Tab. 2, PQ3D demon-
strates SOTA performance for instance segmentation tasks on ScanNet200. Our
approach achieves 20.2% for AP, 28.0% for AP50, and 32.5% for AP25 in prompt-
able manner, which uses the output logits from the ground head after prompting
all classes in ScanNet200. Notably, our methods surpass other open-vocabulary
approaches, offering a more versatile language interface. However, our model’s
performance with tail classes is relatively less robust due to biases in the CLIP
text encoder, which is analyzed in the appendix. To mitigate this issue, we in-
corporate a closed-vocabulary task head, which enables our model to surpass the
closed-vocabulary SOTA method, Mask3D [62], especially in the tail classes.
Zero-shot transfer to Replica In addition to evaluating our method’s perfor-
mance on ScanNet200, we investigate its generalization capabilities to an out-
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of-distribution dataset Replica [63]. Our observations reveal that PQ3D dis-
plays improved generalization abilities on unseen data, surpassing other open-
vocabulary approaches in terms of AP, AP50, and AP25 metrics by 0.2%, 4.1%,
and 7.7%. These findings imply a notable capability of PQ3D for effective trans-
fer to different datasets.

Table 2: Instance Segmentation results on the ScanNet200 validation set
and zero-shot performance on Replica. The Average Precision (AP) is averaged
over an overlapping range, and the AP50, AP25 is evaluated at 50% and 25% overlaps.
Additionally, we provide AP scores for the head, common, and tail classes. The nota-
tion “PQ3D (w/cls)” represents results using a closed-vocabulary classification head,
whereas “PQ3D (prompt)” denotes segmentation results in a promptable way, which
corresponds to an open-vocabulary setting.

Model ScanNet200 Replica
AP AP50 AP25 head common tail AP AP50 AP25

Closed-vocabulary
Mask3D [62] 26.9 36.2 41.4 39.8 21.7 17.9 - - -
PQ3D (w/cls) 27.0 38.9 46.3 35.8 24.2 20.0 - - -
Open-vocabulary
OpenScene [53] 11.7 15.2 17.8 13.4 11.6 9.9 10.9 15.6 17.3
OpenMask3D [64] 15.4 19.9 23.1 17.1 14.1 14.9 13.1 18.4 24.2
PQ3D (prompt) 20.2 28.0 32.5 30.9 17.0 11.3 13.3 22.5 31.9

Visual Grounding Tab. 3 provides an assessment of grounding accuracy for
various methods on four benchmarks: ScanRefer, Nr3D, Sr3D, and Multi3DRefer.
Our model consistently outperforms the other methods in most categories. On
the ScanRefer, Nr3D, and Sr3D benchmarks, our model outperforms SOTA by
5.4%, 2.3%, and 3.3%, respectively. Furthermore, on the Multi3DRefer bench-
mark, our model outperforms others in the ST (single target) and MT (multiple
targets) categories and achieves the highest average score of 50.1%. In the ZT
(zero target) metric, our model lags behind the state-of-the-art. This perfor-
mance gap could potentially be attributed to the fact that ZT is only present in
the Multi3DRefer dataset. However, our model trained only on the Multi3DRefer
dataset “PQ3D (sg.)” exhibits better performance in the ZT and MT metric,
but falls short of the unified trained model in other categories.
Question Answering On the ScanQA test set, PQ3D outperforms all other
methods in terms of the BLEU-1, METEOR, and CIDEr metrics. Specifically,
our model surpasses SOTA by 8.6% / 5.4% for BLEU-1, 2.6% / 1.0% for ME-
TEOR, 11.2% / 2.6% for CIDEr on “w/ object” and “w/o object” test set. How-
ever, in terms of the EM@1 metric, the 3D-VisTA method outperforms our
model with scores of 27.0% “w/ object” and 23.0% “w/o object”, compared to
our model’s 26.1% and 20.0%, respectively. Different from 3D-VisTA, our model
does not use a classification head for QA, which causes a performance drop in
EM metric.
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Table 3: Grounding accuracy (%) on 3D visual grounding benchmarks. The
results of ScanRefer and Multi3DRefer are reported under IoU@0.5. The results of
Nr3D and Sr3D are reported using ground-truth masks during masked cross-attention.
The ZT and ST results from Multi3DRefer are with distractors of the same class.
“PQ3D (sg.)” signifies a model trained on a single dataset.

Method ScanRefer Nr3D Sr3D Multi3DRefer
Unique Multiple Avg. Easy Hard Avg. Easy Hard Avg. ZT ST MT Avg.

ViL3DRel [10] 68.6 30.7 37.7 70.2 57.4 64.4 74.9 67.9 72.8 - - - -
3DJCG [7] 64.3 30.8 37.3 - - - - - - 66.9 16.7 26.2 26.6
UniT3D [13] 73.1 31.1 39.1 - - - - - - - - - -
M3DRef-CLIP [74] 77.2 36.8 44.7 55.6 43.4 49.4 - - - 39.4 30.6 37.9 38.4
3D-VisTA [79] 75.1 39.1 45.8 72.1 56.7 64.2 78.8 71.3 76.4 - - - -

PQ3D (sg.) 76.6 42.0 47.4 73.3 56.7 64.9 78.8 68.2 75.6 61.1 40.5 41.7 48.6
PQ3D 78.2 46.2 51.2 75.0 58.7 66.7 82.7 72.8 79.7 57.7 43.6 40.9 50.1

Table 4: Answer accuracy on ScanQA. Each entry denotes “test w/ object" and
“test w/o object". EM@1 refers to the top 1 exact match accuracy, while BLEU-1,
METEOR, and CIDEr denote text similarity scores between the predicted answer and
the ground-truth answer. The notation "PQ3D (sg.)" indicates a model trained on a
single dataset rather than through unified joint training.

Method EM@1 BLEU-1 METEOR CIDEr

ScanQA [3] 23.5 / 20.9 31.6 / 30.7 13.6 / 12.6 67.3 / 60.2
3D-VisTA [79] 27.0 / 23.0 34.4 / 30.2 15.2 / 12.9 76.6 / 62.6

PQ3D (sg.) 18.9 / 16.1 34.7 / 30.5 14.5 / 12.1 69.3 / 56.0
PQ3D 26.1 / 20.0 43.0 / 36.1 17.8 / 13.9 87.8 / 65.2

For the SQA3D task, it is worth noting that our proposed model falls slightly
behind the SOTA in SQA3D, with a difference of 1.4%. As our model utilizes
the CLIP text encoder, it may face limitations in understanding long sentences.

Dense Captioning For the dense captioning task, PQ3D outperforms all other
models in the CIDEr, METEOR, and ROUGE metrics. With a CIDEr score of
80.3%, it significantly surpasses the next best, 3D-VisTA, which has a CIDEr
score of 66.9%. Importantly, the performance of PQ3D trained on multiple
tasks and datasets exceeds that of PQ3D trained on a single task and dataset,
showcasing the effectiveness of multi-task joint training.

Object Navigation To further verify PQ3D’s effectiveness, we finetune it on
the ObjNav task from CortexBench [50] for navigating an embodied agent to a
desired object. The proposed PQ3D provides global 3D features to the naviga-
tion agent that can improve the baseline VC-1 by a significant margin, achieving
a 22.9% increase in success rate. Importantly, our method showcases consistent
and stable performance, even in the absence of a compass or directional guidance.
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Table 5: Answer accuracy on SQA3D under question types.

Method Test set Avg.What Is How Can Which Other
ClipBERT [49] 30.2 60.1 38.7 63.3 42.5 42.7 43.3
SQA3D [49] 31.6 63.8 46.0 69.5 43.9 45.3 46.6
3D-VisTA [79] 34.8 63.3 45.4 69.8 47.2 48.1 48.5

PQ3D (sg.) 35.6 62.7 45.2 66.3 43.3 43.3 46.8
PQ3D 37.1 61.3 44.5 60.9 47.0 45.1 47.1

Table 6: Captioning results on
Scan2Cap under IoU@0.5 with various
text similarity scores. "PQ3D (sg.)" indi-
cates a model trained on a single dataset
rather than through unified training.

Method CIDEr BLEU-4 METEOR ROUGE

Scan2Cap [12] 35.2 22.4 21.4 43.5
3DJCG [7] 47.7 31.5 24.3 51.8
3D-VisTA [79] 66.9 34.0 27.1 54.3

PQ3D (sg.) 75.6 34.4 28.6 57.1
PQ3D 80.3 36.0 29.1 57.9

Table 7: Results on ObjNav from
CortexBench [50]. Note we reproduce
the result of “VC-1 (ViT-B)” ourselves
due to the slight mismatch we have
found. Only variants with PQ3D use 3D
input. The result with ∗ is also without
a compass sensor.

Model Success ↑ SPL ↑ Soft-SPL ↑

VC-1 (ViT-B) [50] 57.1 0.31 0.41
PQ3D 80.0 0.50 0.60
PQ3D w/o GPS∗ 75.0 0.45 0.50

4.3 Ablation study

Query Decoder Depth In this study, we examine the influence of decoder
depth on downstream tasks. The results suggest that a 4-layer decoder out-
performs both 2-layer and 6-layer ones on all tasks. Consequently, we choose a
4-layer query decoder for PQ3D.
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Fig. 4: Ablation study of query decoder depth.

Scene Features Our result in Tab. 8 reveals the benefits of incorporating
voxel, point, and image features on refering (ScanRefer Acc), question answering
(SQA3D Acc), and captioning (Scan2Cap CIDEr) tasks. Specifically, the addi-
tion of point features results in performance changes of +3.1%, +1.7%, +6.8%
and while the inclusion of image features, based on voxel and point, leads to
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improvements of +2.0%, +1.7%, and +5.7% on these respective tasks. These re-
sults exemplify the effectiveness of our feature alignment approach, as it enables
enhanced performance across grounding, QA, and captioning tasks.
Flexible Inference To assess how our model performs under the constraints of
limited scene representations, we conduct inference while omitting certain scene
features, using a single set of model weights for testing. From Tab. 8, we can
observe that PQ3D achieves comparable performance with the model trained
with specific scene features when the image feature is excluded. When both
image and point features are absent, the PQ3D outperforms the specific-tuned
model, demonstrating the improved generalization ability through training with
multiple representations.
Influence between tasks. In Tab. 9, we examine the interplay among Refer,
QA, and captioning tasks. Our findings indicate that incorporating data from
the Refer task yields improvements of +1.8% for QA and +2.2% for captioning.
While adding QA data shows no significant benefit for Refer, it does contribute
to a +1.2% enhancement in captioning performance. Conversely, data from the
captioning task positively impacts both Refer and QA tasks, with gains of +0.6%
and +0.7%, respectively.

Table 8: Ablation study of scene features.
Each entry denotes PQ3D “trained with specific
scene features” and “trained with all features but
some removed during inference”. These results indi-
cate that PQ3D can support flexible inference.

Voxel Point Image Refer QA Caption
✓ 46.1 / 47.1 43.7 / 44.2 67.8 / 68.1
✓ ✓ 49.2 / 49.4 45.4 / 45.8 74.6 / 74.7
✓ ✓ ✓ 51.2 47.1 80.3

Table 9: Ablation study
of influence between tasks.
Each entry denotes performance
gain by introducing extra task
data for joint training.

Task Data Refer QA Caption
+Refer - 1.8 ↑ 2.2 ↑
+QA 0.0 ↑ - 1.2 ↑
+Caption 0.6 ↑ 0.7 ↑ -

4.4 Qualitative results

Fig. 5 presents the qualitative results of our model, PQ3D. The first row displays
the outcome of promptable segmentation, which includes prompt forms like class
names, a sentence, an image, and a 3D location. The second and third rows
demonstrate the results of 3D-VL tasks, encompassing visual grounding, question
answering, and dense captioning. These results exhibit the model’s capabilities
in solving various 3D-VL tasks. The last row illustrates the model’s proficiency
in object navigation and task planning. PQ3D successfully navigates towards
the intended destination and formulates a plan to organize a living room. These
qualitative results emphasize that PQ3D is a unified model with the potential to
be applied to more embodied agent tasks as a fundamental 3D encoding module.
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I want to watch a movie.

1. Vacuum or sweep the floor to remove any dirt or 
debris.
2. Dust and clean the furniture surfaces, such as 
the table, chairs, and wardrobe.
3. Clean the windows and ensure they are closed 
properly.
4. Adjust the temperature or settings of the heater 
if necessary.
5. Remove any clutter or unnecessary items from 
living room.

Tidy up and arrange the living room

Right      Forward   Stop

Navigate the the bed.

Chair

Table

TV

(2.3, 1.2, 0.3)Chair

[PROMPT]

[RESPONSE] 

Promptable Instance Segmentation

Visual Grounding

Object Navigation and Task Planning

there are brown wooden cabinets. 
placed on the side of the kitchen.

a brown wooden shelf. on the side of 
the room.

a brown wooden door. on the side of 
the room.

a brown chair can be found in the 
conference room.

it is a small black backpack. it is 
sitting on a small table between the 
couch and the leather chair.

Question Answering and Dense Captioning 

I am standing fixing the lamp that is 
on top of the table and behind me 
there is a clothing rack. What is on 
the left of the clothing rack behind me?

I am facing the door and the 
bathroom door opening is on my left 
side. What is under the bed, suitcase 
or mat?

suitcase box

this is a brown chair . it is at the 
table

this is a curtain . it is on the 
wall .

this is a round table . it is in the 
center of the room .

Fig. 5: Qualitative examples from PQ3D. Red bounding box denotes the result
from PQ3D, and green denotes ground truth.

5 Conclusions and Future Works

In conclusion, our proposed PQ3D addresses the challenges in 3D vision-language
learning (3D-VL) by offering a unified approach that integrates multiple repre-
sentations and supports a wide range of tasks. By leveraging the cross-attention
mechanism between instance queries and representations, our model generates
task-aware instance queries, guided by prompts specific to each task. Through
extensive experiments on various 3D-VL benchmarks, we demonstrate the effec-
tiveness of unifying different representations in achieving state-of-the-art results.
Notably, our model demonstrates promotable 3D instance segmentation, which
contributes to advancing open-world 3D scene understanding. With these ac-
complishments, PQ3D may potentially impact embodied intelligence more, rep-
resenting a step towards aligning natural language with the 3D physical world.

At present, the scale and generalization capability of PQ3D still exhibits a
gap compared to 2D vision language foundational models. We aim to enhance
PQ3D by scaling it with more scenes and language data. Additionally, we plan
to utilize the 2D foundational model to guide 3D training.
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Appendix

A Implementation Details

This section introduces more details about model architecture, training details,
and downstream task settings.

A.1 Model architecture

Prompt Encoding To encode textual prompts, we utilize the CLIP (clip-vit-
large-patch14) text encoder with a projection layer. This allows us to encode
text and images into a joint embedding space. For numerical prompts, we em-
ploy a linear layer to project locations and bounding box sizes into RD space.
This projection aligns the feature space with CLIP. When it comes to image
prompts, our goal is to utilize image semantics to replace text prompts for zero-
shot transfer. To achieve this, we encode the text in the form of “[SOS] [object]
[EOS]”, where [object] is substituted with image semantic features encoded by
the CLIP image encoder. This approach allows us to leverage the semantic in-
formation contained within images and use it as a replacement for traditional
text prompts, facilitating zero-shot transfer learning.
Scene Representation For point cloud encoding, we utilize a three-layer Point-
Net++ [55] architecture. This architecture operates on the input points with dif-
ferent radii: 0.2, 0.4, and sampling all points within this ball. The output of this
PointNet++ is an aggregated 768-dimensional feature representation. For voxel
encoding, we use MinkowskiRes16UNet34C [16] with a voxel size of 0.02m. It
combines the ResNet-16 backbone with the UNet architecture in the Minkowski
Engine framework. It applies 3D convolutions and pooling operations to extract
hierarchical features from the input voxelized data. The network progressively
downsamples the spatial resolution in the encoder path and upsamples it in the
decoder path, while capturing and fusing features at multiple scales through
skip connections. We use four levels of voxel features and project them all to
dimension 768. For image encoding, we use a pre-trained OpenSeg feature back-
bone [24].
Prompt-guided Query Learning In query initialization, we first use furthest
point sampling [62] to sample points from original point clouds. After we acquire
the location of sampled points, we apply Fourier spatial position encoding [44]
to encode points pi as follows:

li =
[
cos(2πpiW

T
f )∥ sin(2πpiW

T
f )

]
(A1)

During masked cross-attention, the location information l is incorporated into
the computation of attention by adding it to the queries Q̃l and keys F̃. Here,
Q̃l represents the instance queries, and F̃ denotes the features augmented by
locations. Following the approach described in [62], we enforce attention restric-
tion using a mask generated from the previous layer, denoted as Ml−1. This
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mask ensures that instance queries can only attend to voxel, image, and point
features within their corresponding intermediate instance mask predicted by the
previous layer. This masked-attention mechanism is constrained to focus on rel-
evant features within the instance mask, which helps in capturing context and
information specific to each instance, preventing cross-contamination between
different instances during the attention computation.

Q
′

l = softmax
(
WT

q Q̃lF̃
TWT

k /
√
D +Ml−1

)
WvF (A2)

Output Head The mask head employs two separate MLPs for queries and
features, using a hidden dimension of 768 to map them to a shared space [62].
The grounding head consists of a two-layer MLP with a hidden dimension of
384 and produces a probability score as output [79]. The generation head uses a
pre-trained T5-small [58].

A.2 Training settings

In this section, we provide a detailed explanation of our training procedure.
Image features are preserved before training, and only voxel and point features
are trained. For the unsupervised generation of segment masks, we maintain
the same hyperparameters as those used in ScanNet, which are applied to both
ScanNet and Replica datasets. For data augmentation, we utilize techniques such
as horizontal flipping, random rotations around the z-axis, elastic distortion, and
random scaling. We also implement color augmentations including jittering, as
well as brightness and contrast adjustments. We set the number of queries to 120
to strike a balance between speed and the number of objects present in the scene.
During the training phase of instance segmentation, we adopt the use of ground
truth mask guidance [29] for the initial 200 epochs to expedite the model’s
convergence. We employ a cosine decay model for our learning rate scheduler.
During instruction tuning, we replace the T5 decoder with Vicuna and conduct
10 epochs of fine-tuning. We use a learning rate of 3e-5 and train the model
using 4 A100 GPUs. For object navigation, we connect our query decoder to a
recurrent neural network and use the AdamW optimizer with a learning rate of
1e-3. The object navigation agent is trained in the HM3D environment for 100
million steps with 16 parallel environments.

A.3 Details for Each Task

Instance Segmentation In our instance segmentation experiments, we utilize
the ScanNet200 dataset, which is an extension of the ScanNet dataset. ScanNet
is an annotated dataset that comprises 3D reconstructed indoor scenes, offering a
rich representation of various room types such as hotels, libraries, and offices. The
dataset is divided into three distinct subsets: 1,202 scenes for training, 312 scenes
for validation, and 100 scenes for the hidden test set. In our evaluation, we utilize
the mean average precision (mAP) metric at various Intersections over Union
(IoU) thresholds. This metric provides a comprehensive assessment of instance
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segmentation performance. In closed vocabulary experiments, we employ 120
queries and select the top 200 output masks based on their classification scores.
In open vocabulary experiments, we prompt all 200 classes and select the top
200 masks using binary cross-entropy (BCE) logits. This setup allows for the
exploration of a broader range of object classes, extending beyond the limitations
of a closed vocabulary.
Visual Grounding In our experiments, we evaluate our model on three different
datasets for visual grounding tasks: ScanRefer, Nr3D/Sr3D, and Multi3DRefer.

ScanRefer dataset consists of 51,583 sentences written by humans to describe
800 scenes from the ScanNet dataset. The dataset is categorized into unique and
multiple subsets based on whether the target object described in the sentence is
a unique class within the scene. The evaluation metric for this task is accuracy,
measured under intersection over union (IoU) thresholds of 0.25 and 0.5. In this
task, we aim to predict the location of the target object described in the sentence.

Nr3D/Sr3D datasets comprise synthetic and human utterances, respectively.
Sr3D contains 83,572 synthetic utterances, while Nr3D contains 45,503 human
utterances. Both datasets are split into “Easy”/“Hard” and “ViewDep”/“ViewIndep”
subsets. The “Hard” samples involve scenes with more than two distractors. The
evaluation metric for these datasets is based on the F1 score, measured at IoU
thresholds of 0.25 and 0.5. Ground truth masks and locations are used for eval-
uation, following the original settings of these benchmarks to ensure fair com-
parison.

Multi3DRefer dataset consists of 61,926 language samples, categorized into
zero-target (ZT), single-target (ST), and multi-target (MT) referring samples.
In this dataset, we predict masks for the referred objects. The evaluation metric
used is the F1 score at IoU thresholds of 0.25 and 0.5. Again, we follow the
original settings of this benchmark to ensure fair and consistent evaluation.
Question Answering ScanQA is a 3D question answering dataset with 41,363
questions and 58,191 answers, focusing on spatial relations. Evaluation metrics
include exact matches (EM@1, EM@10) and text similarity metrics (BLEU-1,
ROUGE, METEOR, CIDEr). We also evaluate PQ3D on SQA3D, a benchmark
for scene understanding with 6.8k situations and 33.4k diverse questions. The
evaluation metric in SQA3D is answer accuracy across different question types.
Both benchmarks use a generation approach for answering questions.
Dense Captioning Scan2Cap is a dense captioning benchmark that utilizes
texts from the ScanRefer dataset. In this benchmark, we evaluate the perfor-
mance of models in generating dense captions for 3D scenes. To assess the qual-
ity of the generated captions, we report text similarity scores, including CIDEr,
BLEU-4, METEOR, and ROUGE, under different IoU (Intersection over Union)
scores. These metrics provide a measure of the similarity between the generated
captions and the reference captions, taking into account the level of overlap
between the predicted and ground truth regions of interest.
Object Navigation We utilize the object navigation benchmark from Cor-
texBench, which is based on the HM3D-SEM dataset. The dataset consists of
80 training scenes, 20 validation scenes, and 20 test scenes from the HABITAT
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platform. For our evaluation, we use the validation split for comparison purposes.
In this benchmark, the agent is modeled after the LocoBot, and the sensors are
positioned at the top of the agent’s head. The RGB camera used has a resolution
of 640×480 and a horizontal field of view of 79 degrees. The objective for the
agent is to navigate within the environment and locate objects belonging to one
of six categories: “chair”, “bed”, “plant”, “toilet”, “tv/monitor”, and “sofa”. The
agent has a maximum of 500 steps to complete the task successfully. The deter-
mination of successful episodes is based on the agent stopping within 0.1m of a
viewpoint that is within 1m of any instance of the target object. This proximity
criterion is used to determine if the agent has successfully located the target
object.
Task Planning To demonstrate the task planning ability of our model, we
employ the LEO [32] instruction following data for fine-tuning. This dataset
comprises scenes from 3RScan and ScanNet, enriched with 3D dialogues, scene-
aware task planning information, and paired 3D question answering data. By
utilizing this data, we aim to enhance our model’s capability to understand
instructions, follow them in a 3D environment, and effectively plan and execute
tasks based on the given instructions. The inclusion of scene-aware task planning
information allows our model to incorporate contextual knowledge about the
environment and optimize its decision-making process accordingly. Furthermore,
the paired 3D question answering data enables our model to not only follow
instructions but also answer questions related to the scene and the performed
tasks.

B Extra Ablation Studies

Bias in CLIP text encoder From Fig. A1, we find that when comparing
classes with similar semantics, such as “cabinet” and “kitchen cabinet”, or “chair”
and “armchair”, we observe differences in the instance segmentation quality be-
tween a closed vocabulary head and an open vocabulary approach. In the closed
vocabulary setting, where specific class labels are predefined, the instance seg-
mentation quality tends to be higher. This is because the model is trained to
recognize and segment instances based on the pre-defined class labels, leading to
more accurate and precise results. On the other hand, in the open vocabulary
setting, where the model has the flexibility to generate class labels on the fly,
the instance segmentation quality may vary. The model may struggle to dis-
tinguish between closely related classes, resulting in less accurate segmentation
boundaries and potentially merging instances that should be separated.

These differences arise from the challenge of disambiguating between classes
that have similar meanings but subtle text differences in CLIP embedding space
as shown in Fig. A2. The closed vocabulary approach benefits from pre-defined
class boundaries, while the open vocabulary approach relies on the model’s
ability to generalize and make fine-grained distinctions between similar classes.
Therefore, when dealing with classes that have similar semantics but differ in
instance segmentation quality, the choice between closed vocabulary and open
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Fig.A1: Differences in classes with similar semantics but have different frequencies
in the ScanNet200 dataset. AP Gap denotes the difference between closed vocabulary
and open vocabulary.

vocabulary approaches should be carefully considered, taking into account the
specific requirements and trade-offs of the task at hand.

Chair Table Cabinet

Counter Dispenser Other

Fig.A2: t-SNE visualization of ScanNet200 class names encoded by CLIP text en-
coder.

Ablation of structures Apart from our proposed decoder structure in Fig. 3,
we explore two alternative structures for the cross-attention process: The parallel
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structure and the sequential structure. In the parallel structure, instance queries
cross-attend to all visual features and the encoded task prompt in parallel:

Q
′

l =
∑

F∈{V,I,P,t}

MaskedCrossAttn(Ql,F) (A3)

Ql+1 = SpatialSelfAttn(Q
′

l) (A4)

Conversely, in the sequential structure, instance queries cross-attend to all visual
features and the encoded task prompt in sequence:

Q
′

l = MaskedCrossAttn(Ql,V) (A5)

Q
′′

l = MaskedCrossAttn(Q
′

l, I) (A6)

Q
′′′

l = MaskedCrossAttn(Q
′′

l ,P) (A7)

Q
′′′′

l = CrossAttn(Q
′′′

l , t) (A8)

Ql+1 = SpatialSelfAttn(Q
′′′′

l ) (A9)

From Tabs. A1 to A6, it is evident that the structure outlined in our main
paper delivers superior performance compared to both parallel and sequential
approaches.

C More qualitative results

More visualization In Fig. A3, we present results from various tasks conducted
on a range of scenes. In the case of promptable instance segmentation, PQ3D is
capable of producing high-fidelity masks and reasoning about affordances such as
comfort and exit. Interestingly, when an image prompt featuring a part of a piano
keyboard is provided, PQ3D segments not the entire piano but a small section
of the keyboard. This suggests that the query can extract semantic information
from the image prompt and segment a specific part of an instance. In the visual
grounding task, it is observed that PQ3D is capable of grounding both single and
multiple objects, and it demonstrates an understanding of the relations between
objects. In the question answering task, PQ3D exhibits an understanding of
the surrounding environment and can infer object classes and states based on
the given situation. In the dense captioning task, our model can describe an
object and its relationships with surrounding objects. In object navigation and
planning, the examples presented demonstrate our model’s capacity to support
embodied agent tasks.
Failure cases We present failure cases of PQ3D in Fig. A4. It can be observed
that PQ3D may segment unrelated objects when text prompts lack sufficient
clarity, such as in the case of prompts like “classical”, “exam”, or “video games”.
Additionally, when image prompts contain background noise, it may lead to
confusion for the model, causing it to segment random objects across differ-
ent regions in a scene. In visual grounding and question answering tasks, the
model may struggle to recognize complex spatial relations and comprehend long
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there are brown wooden cabinets. 
placed on the side of the kitchen.

Visual Grounding

Question Answering

Dense Captioning

Promptable Instance Segmentation

Object Navigation and Task Planning

a brown wooden shelf. on the side of 
the room.

a brown wooden door. on the side of 
the room.

a brown chair can be found in the 
conference room.

it is a small black backpack. it is 
sitting on a small table between the 
couch and the leather chair.

After an exhausted day, I am lying on 
the bed closest to the window with 
my head on the pillows. Can I see 
the television from my position on the 
bed?

I am standing fixing the lamp that is 
on top of the table and behind me 
there is a clothing rack. What is on 
the left of the clothing rack behind me?

I am standing in between the toilet on 
my right and the sink on my left. Is 
the door closed or open to my left 
side?

I am facing the door and the 
bathroom door opening is on my left 
side. What is under the bed, suitcase 
or mat?

I am standing by the ottoman on my 
right facing a couple of toolboxes. 
What instrument in front of me is 
ebony and ivory?

pianoYes suitcase box Closed

this is a brown chair . it is at the table this is a curtain . it is on the wall .
this is a round table . it is in the center 
of the room .

a brown chair can be found in the 
conference room.

this is a black backpack . it is on a 
brown couch .

Left           Forward           Right           Forward

Navigate to the picture. Structure a plan for the task: Reposition the 
furnishings in the lounge area.

1. Move the sofa to the left of the chair, creating a 
seating area.

2. Place the coffee table in front of the sofa, 
creating a surface for placing drinks or snacks.

3. Position the tv on the tv stand, ensuring it is 
centered and facing the correct direction.

4. Adjust the position of the curtains to control the 
amount of light entering the room.

5. Ensure that the door is closed and properly 
aligned with the wall.

6. Clean and dust the surfaces of the furniture, 
including the sofa, chair, coffee table, and tv 
stand.

7. Vacuum or sweep the floor to remove any dirt 
or debris

Comfortable Exit this room (6.2, 2.1, 0.6)

Fig.A3: More visualization on promptable segmentation, visual grounding, question
answering, dense captioning, object navigation, and task planning. Red bounding box
denotes predicted result, green denotes groundtruth result.

sentences. This limitation can potentially be mitigated by employing a more
powerful text encoder. In dense captioning tasks, the model may face challenges
in accurately understanding small objects in terms of their semantics.
Effect of different features As illustrated in Fig. A5, it is clear that integrating
image and point features leads to a more refined understanding of the scene. In
tasks such as visual grounding and question answering, having more features
enables the model to better comprehend the semantics, such as objects like
backpacks and cluttered desks, as well as spatial relationships like “other end”,
“corner”, “beneath”, and attributes like color and object state. In the case of
dense captioning, incorporating image features is particularly beneficial for the
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Promptable Instance Segmentation

Visual Grounding

Question Answering and Dense Captioning

the chair is at the right end of the 
table. it is to the right of another chair. 
it is the last chair on this side of the 
table.

this is a blue chair. it is to the left of 
another blue chair.

the cabinet is in the northwest corner 
of the room. the cabinet is a white 
rectangular prism.

from where the speaker stands and 
talks it is a brown chair located from 
the right side of the room. is the 
second chair from the right in the 
second row.

this is a green tool box. . the green 
tool box is in front of a red tool box on 
the floor next to a piano.

chair❌
beds✅

I am resting on my armchair with my 
feet on the ottoman, and there is 
another armchair to my left. What two 
objects of the same item are on the 
right hand side of me?

I am crouching straightening the tray 
rack and to my right is a huge curtain. 
Is the large window covered by a 
curtain?

I am on bed closest to the curtain 
and facing lamp and curtain. Are the 
windows I am facing covered by a 
curtain?

no❌
yes✅ no❌

yes✅

this is a black cabinet . it is to the 
right of the black couch .❌
this is a blue toolbox . it is in front 
of a red toolbox✅

this is a wooden desk . it is to the 
right of a table❌
the table is located up against the 
wall on the right side of the room . 
there is a chair pulled under the 
table .✅

Classical musicPlay video games Final exam Soft and furry with colorful textures

Fig.A4: Failure cases in promptable segmentation, visual grounding, question answer-
ing, and dense captioning.

model to describe more detailed information about the instance, including class,
shape, and color.

D Full quantitative results

We provide full quantitative results in Tab. A1, Tab. A2, Tab. A3, Tab. A4,
Tab. A5, Tab. A6, including results of baselines and all variants of PQ3D for
abalation study. Specifically, PQ3D (sg.) denotes the model trained on a single
dataset rather than through unified joint training, PQ3D (V) denotes the model
with only voxel features, PQ3D (V,P) denotes the model with only point and
voxel features, PQ3D (rm I,P), and PQ3D (rm I) denotes training with all
features but removing image, voxel or image only during inference. PQ3D (2-
layer) denotes the model with 2-layer decoder, PQ3D (6-layer) denotes the model
with 6-layer decoder, PQ3D (par.) denotes the model with parallel structure,
and PQ3D (seq.) denotes the model with sequential structure.
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this is a brown cabinet. it sets along 
the wall, right next to a window.

Visual Grounding

Question Answering

Dense Captioning

a cluttered desk sits just ahead of a 
wall that has glass doors in it to the 
left. their is space for a chair between 
the desk and wall.

this is a brown stool. it is beneath a 
red toolbox and a blue toolbox.

this is a brown chair. it is turned 
toward the end of the table.

in the corner of the room to the right 
of the door is a piano. to the left of 
the piano is a green tool box, behind 
the green tool box is a red tool box.

I am standing fixing the lamp that is 
on top of the table and behind me 
there is a clothing rack. What is at 
the other end of the table in front of 
me?

I am walking into the room with the 
toilet paper dispenser in my twelve 
o'clock direction. What is hanging on 
the door behind me?

I am sitting on the piano bench facing 
the piano. How many backpacks are 
on the ottoman?

I am standing in front of a curtain and 
there is a try rack directly in front of 
me. Can I turn on the lamp without 
moving?

I am brushing my teeth at the sink. Is 
the toilet seat up or down to my left?

Table❌
Shelf❌
Chair ✅

yes❌
yes❌
yes ❌

towel❌
backpack ✅
backpack ✅

up ✅
down ❌
up ✅

two ✅
two ✅
two ✅

the chair is the second closest one 
to the table . the chair is black and 
has a curved backside 
this is a brown chair . it is at a table .
this is a chair . it is the second chair 
from the left . 

the table is in the middle of the 
room . the table is a black rectangle .
this is a brown table . it is in the 
center of the room .
this is a round table . it is in the 
center of the room . 

the couch is in the middle of the 
room . it is a gray color .
the couch is in the middle of the 
room . the couch is a dark brown 
rectangle .
the couch is on the left side of the 
room  the couch is red and has a 
red color。

the chair is in the middle of the 
room . the chair is a red rectangle .
the chair is in the corner of the room . 
the chair is brown and has a curved 
backside .
there is a rectangular blue chair . it 
is next to a shelf . 

this is a black desk . it is to the right 
of the window .
the desk is right of the door . the 
desk is brown and rectangular .
this is a black piano . it is to the right 
of a black stool .

Fig.A5: Comparison between different features. The blue color represents the results
obtained using only the voxel feature. The magenta color signifies the results from using
both voxel and point features. The results derived from using all features are denoted
by the color red. The ground truth results are represented by the color green.
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Table A1: Grounding accuracy (%) on ScanRefer with detected object masks. “Det.”
represents the 3D object detection module used in the model. “VN” stands for VoteNet
[19], “PG” for PointGroup [38], and M3D for Mask3D [62], while “Opt.” denotes jointly
optimizing the object detector on ScanRefer.

Method Det. Unique Multiple Overall
acc@0.25 acc@0.5 acc@0.25 acc@0.5 acc@0.25 acc@0.5

3DVG-Trans [75] Opt. 81.9 60.6 39.3 28.4 47.6 34.7
3D-SPS [48] Opt. 84.1 66.7 40.3 29.8 48.8 37.0
3DJCG [7] Opt. 83.5 64.3 41.4 30.8 49.6 37.3
SAT [70] VN 73.2 50.8 37.6 25.2 44.5 30.1
MVT [33] PG 77.7 66.5 31.9 25.3 40.8 33.3
ViL3DRel [10] PG 81.6 68.6 40.3 30.7 47.9 37.7
3D-VisTA [79] PG 77.0 67.9 37.9 30.4 45.2 37.3
3D-VisTA [79] M3D 81.6 75.1 43.7 39.1 50.6 45.8

PQ3D (sg.) Opt. 85.2 76.6 46.8 42.0 52.8 47.4
PQ3D Opt. 86.7 78.3 51.5 46.2 57.0 51.2
PQ3D (2-layer) Opt. 86.6 78.2 50.6 45.2 56.1 50.2
PQ3D (6-layer) Opt. 85.0 77.1 51.2 45.9 56.4 50.7
PQ3D (V) Opt. 82.9 75.1 45.9 40.9 51.6 46.1
PQ3D (rm I,P) Opt. 84.0 76.4 46.8 41.7 52.6 47.1
PQ3D (V,P) Opt. 84.4 76.1 49.7 44.4 55.0 49.2
PQ3D (rm I) Opt. 86.2 77.9 49.1 44.3 54.8 49.4
PQ3D (par.) Opt. 85.8 77.5 50.9 45.6 56.3 50.5
PQ3D (seq.) Opt. 83.7 76.1 46.8 41.9 52.5 47.1
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Table A2: Grounding accuracy (%) on Nr3D and Sr3D with ground-truth object
masks.

Nr3D Sr3D

Method Overall Easy Hard View
Dep

View
Indep Overall Easy Hard View

Dep
View
Indep

3DVG-Trans [75] 40.8 48.5 34.8 34.8 43.7 51.4 54.2 44.9 44.6 51.7
TransRefer3D [28] 48.0 56.7 39.6 42.5 50.7 57.4 60.5 50.2 49.9 57.7
LAR [4] 48.9 58.4 42.3 47.4 52.1 59.4 63.0 51.2 50.0 59.1
SAT [70] 56.5 64.9 48.4 54.4 57.6 57.9 61.2 50.0 49.2 58.3
3D-SPS [48] 51.5 58.1 45.1 48.0 53.2 62.6 56.2 65.4 49.2 63.2
MVT [33] 59.5 67.4 52.7 59.1 60.3 64.5 66.9 58.8 58.4 64.7
ViL3DRel [10] 64.4 70.2 57.4 62.0 64.5 72.8 74.9 67.9 63.8 73.2
3D-VisTA [79] 64.2 72.1 56.7 61.5 65.1 76.4 78.8 71.3 58.9 77.3

PQ3D (sg.) 64.9 73.3 56.7 60.7 67.0 75.6 78.8 68.2 51.5 76.7
PQ3D 66.7 75.0 58.7 62.8 68.6 79.7 82.7 72.8 62.9 80.5
PQ3D (2-layer) 64.2 72.7 56.3 57.2 67.8 78.2 81.3 70.9 62.1 78.9
PQ3D (6-layer) 66.5 74.1 59.4 60.9 69.3 80.0 82.6 73.9 65.8 80.7
PQ3D (V) 58.8 66.7 51.4 55.2 60.7 71.4 73.5 66.5 56.9 72.1
PQ3D (rm I,P) 60.3 69.0 52.0 56.2 62.4 71.9 75.0 64.9 55.5 72.7
PQ3D (V,P) 64.4 73.3 56.0 61.4 65.9 77.5 80.7 70.0 61.0 78.3
PQ3D (rm I) 63.7 71.8 56.1 59.1 66.0 77.3 80.4 70.1 61.7 78.0
PQ3D (par.) 65.9 74.2 58.1 62.5 67.6 78.7 81.8 71.5 65.7 79.3
PQ3D (seq.) 56.1 63.8 48.9 47.6 60.4 70.8 73.6 64.3 56.1 71.5

Table A3: Grounding accuracy (%) on Multi3DRefer. Results of 3DVG-Trans+,
D3Net and 3DJCG are provided by [74].

Method F1@0.5 (Pred boxes)
ZT w/o D ZT w/D ST w/o D ST w/D MT All

3DVG-Trans+ [75] 87.1 45.8 27.5 16.7 26.5 25.5
D3Net (Grounding) [9] 81.6 32.5 38.6 23.3 35.0 32.2
3DJCG (Grounding) [7] 94.1 66.9 26.0 16.7 26.2 26.6
M3DRef-CLIP [74] 81.8 39.4 47.8 30.6 37.9 38.4

PQ3D (sg.) 87.1 61.1 66.2 40.5 41.7 48.6
PQ3D 85.4 57.7 68.5 43.6 40.9 50.1
PQ3D (2-layer) 85.2 56.9 66.3 41.4 39.0 48.1
PQ3D (6-layer) 86.5 58.5 67.4 44.0 41.6 50.3
PQ3D (V) 84.1 55.1 63.0 36.8 37.5 44.8
PQ3D (rm I,P) 84.1 57.7 62.9 38.2 38.1 45.7
PQ3D (V,P) 82.4 54.6 66.0 40.9 39.4 47.7
PQ3D (rm I) 85.6 55.4 66.9 40.8 39.8 48.1
PQ3D (par.) 87.8 58.5 66.8 42.4 41.1 49.4
PQ3D (seq.) 84.5 58.8 62.3 34.5 35.5 43.2
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Table A4: Answer accuracy on ScanQA. Each entry denotes “test w/ object” / “test
w/o object”.

Method EM@1 BLEU-1 ROUGE METEOR CIDEr

Image+MCAN [3] 22.3 / 20.8 26.7 / 26.3 31.3 / 29.2 12.1 / 11.5 60.4 / 55.6
ScanRefer+MCAN [3] 20.6 / 19.0 27.9 / 27.0 30.7 / 28.6 12.0 / 11.4 57.4 / 53.4
ScanQA [3] 23.5 / 20.9 31.6 / 30.7 34.3 / 31.1 13.6 / 12.6 67.3 / 60.2
3D-VisTA [79] 27.0 / 23.0 34.4 / 30.2 38.6 / 32.8 15.2 / 12.9 76.6 / 62.6

PQ3D (sg.) 18.9 / 16.1 34.7 / 30.5 35.6 / 30.4 14.5 / 12.1 69.3 / 56.0
PQ3D 26.1 / 20.0 43.0 / 36.1 42.9 / 34.0 17.8 / 13.9 87.8 / 65.2

Table A5: Answer accuracy on SQA3D under question types.

Method Test set Avg.What Is How Can Which Other

GPT-3 [6] 39.7 46.0 40.5 45.6 36.1 38.4 41.0
ClipBERT [41] 30.2 60.1 38.7 63.3 42.5 42.7 43.3
SQA3D(w/o s) [49] 28.6 65.0 47.3 66.3 43.9 42.9 45.3
SQA3D [49] 31.6 63.8 46.0 69.5 43.9 45.3 46.6
3D-VisTA [79] 34.8 63.3 45.4 69.8 47.2 48.1 48.5

PQ3D (sg.) 35.6 62.7 45.2 66.3 43.3 43.3 46.8
PQ3D 37.1 61.4 44.5 61.0 47.0 45.1 47.1
PQ3D (2-layer) 37.7 62.1 41.4 62.9 36.2 46.2 46.3
PQ3D (6-layer) 36.2 62.2 42.0 64.6 40.4 42.5 46.0
PQ3D (V) 32.3 59.2 40.1 61.5 43.2 41.3 43.7
PQ3D (rm I,P) 31.5 60.3 41.1 61.8 42.7 44.5 44.2
PQ3D (V,P) 33.5 59.7 40.3 66.7 41.8 46.5 45.4
PQ3D (rm I) 35.4 61.0 42.4 62.3 43.5 43.9 45.8
PQ3D (par.) 37.7 60.9 42.0 64.1 42.1 41.4 46.2
PQ3D (seq.) 33.6 58.9 43.3 65.5 42.6 43.7 45.2
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Table A6: Captioning results on Scan2Cap dataset. “C” stands for “CIDEr”, “B-4” for
“BLEU-4”, “M” for “METEOR”, and “R” for “ROUGE”, respectively. “@0.25” and “@0.5”
represent the overlap ratios between the predicted boxes and ground truth boxes.

Method @0.25 @0.5
C B-4 M R C B-4 M R

Scan2Cap [12] 53.7 34.3 26.1 55.0 35.2 22.4 21.4 43.5
3DJCG [7] 60.9 39.7 27.5 59.0 47.7 31.5 24.3 51.8
3D-VisTA [79] 71.0 36.5 28.4 57.6 66.9 34.0 27.1 54.3

PQ3D (sg.) 81.5 37.5 30.4 60.6 75.6 34.5 28.6 57.1
PQ3D 87.1 39.2 30.9 61.5 80.3 36.0 29.1 57.9
PQ3D (2-layer) 86.4 38.8 30.7 61.0 79.8 35.5 28.8 57.3
PQ3D (6-layer) 83.2 36.2 30.0 59.5 76.7 33.1 28.1 56.0
PQ3D (V) 73.3 33.8 28.8 58.5 67.8 31.0 27.1 54.9
PQ3D (rm I,P) 73.2 34.2 29.1 59.3 68.1 31.5 27.4 55.9
PQ3D (V,P) 80.2 37.7 30.2 60.9 74.6 34.8 28.4 57.5
PQ3D (rm I) 80.4 37.8 30.1 60.7 74.7 34.7 28.4 57.2
PQ3D (par.) 84.9 39.1 30.5 61.2 78.3 35.7 28.6 57.5
PQ3D (seq.) 66.1 29.1 27.9 56.1 61.4 27.0 26.3 53.0
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