
Evaluating and Modeling Social Intelligence:
A Comparative Study of Human and AI Capabilities

Junqi Wang‹,1 Chunhui Zhang‹,1 Jiapeng Li1,2 Yuxi Ma1 Lixing Niu1,3

wangjunqi@bigai.ai zhangchunhui@bigai.ai lijiapeng@stu.xjtu.edu.cn mayuxi@bigai.ai lxniu@stu.pku.edu.cn
Jiaheng Han1,3 Yujia Peng1,4,5,� Yixin Zhu4,� Lifeng Fan1,�

hanjiaheng@pku.edu.cn yujia_peng@pku.edu.cn yixin.zhu@pku.edu.cn lifengfan@bigai.ai
‹ equal contributors � corresponding authors 1 State Key Laboratory of General Artificial Intelligence, BIGAI

2 National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, Xi’an Jiaotong University
3 School of Intelligence Science and Technology, Peking University 4 Institute for Artificial Intelligence, Peking University

5 School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University

Abstract

Facing the current debate on whether Large Language Mod-
els (LLMs) attain near-human intelligence levels (Mitchell &
Krakauer, 2023; Bubeck et al., 2023; Kosinski, 2023; Shiffrin
& Mitchell, 2023; Ullman, 2023), the current study intro-
duces a benchmark for evaluating social intelligence, one of
the most distinctive aspects of human cognition. We devel-
oped a comprehensive theoretical framework for social dy-
namics and introduced two evaluation tasks: Inverse Reason-
ing (IR) and Inverse Inverse Planning (IIP). Our approach
also encompassed a computational model based on recursive
Bayesian inference, adept at elucidating diverse human be-
havioral patterns. Extensive experiments and detailed analy-
ses revealed that humans surpassed the latest GPT models in
overall performance, zero-shot learning, one-shot generaliza-
tion, and adaptability to multi-modalities. Notably, GPT mod-
els demonstrated social intelligence only at the most basic
order (order = 0), in stark contrast to human social intelli-
gence (order ě 2). Further examination indicated a propen-
sity of LLMs to rely on pattern recognition for shortcuts,
casting doubt on their possession of authentic human-level
social intelligence. Our codes, dataset, appendix and human
data are released at https://github.com/bigai-ai/
Evaluate-n-Model-Social-Intelligence.

Introduction
The emergence of LLMs has significantly influenced diverse
fields, sparking debates about the potential emergence of
Artificial General Intelligence (AGI). Central to this discussion
is whether LLMs can match or surpass human intelligence
(Bubeck et al., 2023; OpenAI, 2023; Shiffrin & Mitchell,
2023). Advocates suggest LLMs exhibit key human intelli-
gence markers, such as Theory of Mind (ToM), particularly
in standard tasks like the false belief test (Kosinski, 2023).
However, critics point to a notable gap in LLMs’s abilities,
arguing they rely on superficial heuristics rather than deep
ToM understanding and struggle with novel or slightly altered
scenarios (Ullman, 2023; Sap et al., 2022; X. Ma et al., 2023).
This is also evident in their handling of counterfactual and
causal reasoning (Arkoudas, 2023; Webb et al., 2023; Binz &
Schulz, 2023; Y. Ma et al., 2023; Peng et al., 2023; Collins
et al., 2022). Despite these revelations, a methodical, scien-
tific framework for directly comparing machine and human
intelligence is lacking.

Our research addresses this void by introducing a bench-
mark specifically designed for evaluating social intelligence, a
key differentiator of human cognition from other primates (Fan
et al., 2022). Herrmann et al. (2007) revealed that while chil-
dren and chimpanzees have similar cognitive abilities in phys-
ical tasks, children surpass both chimpanzees and orangutans
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Figure 1: A unified framework of social dynamics. The founda-
tional unit of human social interaction is exemplified by the actor
i and the observer j. This interaction is characterized by recursive
mind reasoning, leading to the formation of a multi-layered cognitive
architecture termed as “N Minds” (Fan et al., 2021). This structure en-
compasses various levels of cognitive processing, including 0th-order
minds, 1st-order minds, and 2nd-order minds. Our framework pri-
marily concentrates on three critical mental operations: (i) Forward
Planning, where actors strategize future actions based on current
states; (ii) Inverse Reasoning, involving the observer’s deduction
of underlying actor motives from observed actions; and (iii) Inverse
Inverse Planning, a higher-order cognitive process where the actor
anticipates the observer’s inferences and plans actions accordingly.

in social tasks. Consequently, social intelligence emerges as a
crucial metric for assessing whether LLMs can match human
cognitive abilities. We propose a comprehensive framework
for social dynamics (Fig. 1), focusing on key aspects of social
interactions: social perception, ToM reasoning, and decision-
making between two agents (the actor and the observer). The
framework emphasizes three main processes: forward plan-
ning, inverse reasoning, and inverse inverse planning.

In our evaluation methodology, we introduce two key tasks:
Inverse Reasoning (IR) and Inverse Inverse Planning (IIP).
Baker et al. (2017) studied the process of IR in “Food Truck”
task: inversely reason about human beliefs and preferences
from their trajectories. Further, Chandra et al. (2023) studied
the IIP task: the actor plans actions to best convey desire. We
extend them to more complicated versions (Fig. 2). Note that
our selected tasks are designed to comprehensively encom-
pass four cognitive dimensions: (i) rationality, (ii) perspective
switching, (iii) counterfactual reasoning, (iv) and cognitive
flexibility, thereby effectively evaluating social intelligence.

Additionally, we have developed a unified computational
model that based on recursive Bayesian inference. This model
interprets IR as the observer’s odd-order inference and IIP
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"It seems that Bob prefers the brown food 
truck the best. He searched all over and 
found out that truck didn't come today, so 
he finally went to the green truck."

"I better go this way, so David will 
quickly understand that I prefer 
hamburger rather than coffee."

“What is Bob’s preference 
for all food trucks ?”

“How can I quickly signal 
my preference to David?”

Figure 2: Evaluation tasks: IR (left) and IIP (right). The IR task
involves observer Alice analyzing actor Bob’s trajectory to deduce his
preferred food truck. In the IIP task, actor Carol strategizes her route
to efficiently convey her restaurant preference to observer David.

as the actor’s even-order inference, providing a systematic
approach to modeling intricate social interactions. Our model
highlights the differences in preferences and decision-making
processes between human cognition and machine approaches,
delineating a clear distinction in how each comprehends social
dynamics. Our extensive experimental studies and in-order
analysis demonstrate that humans significantly surpass LLMs
in multiple aspects: overall performance, zero-shot learning,
one-shot generalization, and adaptability to different modali-
ties. We also find that the social intelligence demonstrated by
LLMs is only at the most rudimentary order (order = 0), in
stark contrast to human social intelligence (order ě 2). And
LLMs are found to rely on pattern recognition for shortcuts,
rather than possessing authentic human-level social intelli-
gence. Our model closely aligns with human performance
patterns, offering new perspectives in the ongoing discourse
on human versus machine intelligence and contributing to the
advancement of Artificial Social Intelligence (ASI).

In summary, by offering a nuanced benchmark for evaluat-
ing social intelligence, including a robust framework, represen-
tative tasks, an advanced computational model and benchmark
experimental results of humans and machines (i.e., our model,
LLMs), our work lays a foundational stone to bridge the gap,
aspiring for a future where machines can more authentically
replicate the human social intelligence intricacies.

Related Work
Cognitive Abilities for Social Intelligence Rationality

is considered a fundamental ability of an agent, denoting the
capacity for optimal decision-making (Gergely et al., 1995; So-
dian et al., 2004). Research indicates that infants as young as
12 months exhibit rationality in social contexts (Gergely et al.,
1995). Perspective switching involves the capability to under-
stand perspectives different from one’s own, moving beyond
a solely egocentric viewpoint (Underwood & Moore, 1982;
Ackermann, 2012). By age 4, children begin to grasp that oth-
ers may hold different perspectives (Ackermann, 2012; Borke,
1975; Baron-Cohen et al., 1985). Notably, perspective switch-
ing is intricately linked to prosocial behavior (Ackermann,
2012; Stone, 2006; LeMare & Rubin, 1987), and its absence
is a challenge in social interactions, particularly observed in
individuals with autism (Underwood & Moore, 1982). Coun-
terfactual reasoning pertains to envisaging alternate outcomes
based on different choices (Epstude & Roese, 2008; Byrne,
2017; Beck et al., 2006), a skill that begins to develop in 2-year-

olds and matures throughout childhood (Byrne, 2016, 2017;
Nyhout & Ganea, 2019; Rafetseder et al., 2010). There is sig-
nificant evidence linking the development of this ability with
ToM (Byrne, 2016). Cognitive flexibility refers to the ability to
adapt thoughts and actions in response to changing contexts
(Dajani & Uddin, 2015; Ionescu, 2012; Barbey, 2021, 2018;
Barbey et al., 2013; Yakupov et al., 2022), and is fundamental
to various cognitive capabilities, including task-switching in
dual-task scenarios (Liu et al., 2016).

Computational Models on Social Dynamics Social dy-
namics modeling often encompasses a dynamic feedback loop
of actions, reactions, and cognitive processes between two
agents (Kingsbury & Hong, 2020; Schilbach et al., 2013).
Bayesian models, like Bayesian Inverse Planning and BToM,
are employed to deduce others’ mental states from observed
behaviors (Baker et al., 2009, 2017). Chandra et al. (2023)
extended these models to include “inverse inverse planning,”
whereby agents strategically choose actions to shape audience
perception. Wang et al. (2020) developed mathematical mod-
els for 2-agent ToM of varying orders. In scenarios involving
more than two agents, Fan et al. (2021) introduced a structured
mental representation termed “N minds.”

Evaluation Tasks
In order to assess the social intelligence of both humans and
LLMs, we introduce two tasks, specifically Inverse Reason-
ing (IR) and Inverse Inverse Planning (IIP), adapted from
Baker et al. (2017) and Chandra et al. (2023) respectively.
The two representative tasks are designed to reflect four basic
key cognitive dimensions, including rationality, perspective
switching, counterfactual reasoning, and cognitive flexibility,
as well as to encapsulate the three key mental processes in-
herent in human social interaction between an observer and
an actor, especially “Inverse Reasoning” and “Inverse Inverse
Planning”. For illustrative details, refer to Fig. 2.

Task 1: Inverse Reasoning (IR)
As depicted in Fig. 3a, the IR task takes place on a 5 ˆ 5
grid campus with 4 parking slots, each highlighted in red. The
setup includes 5 distinct food trucks, labeled X , Y , Z, M , and
N . Every day, 4 of these trucks, say X , Y , Z, and M , are ran-
domly allocated to the parking slots. Agent A (in green) roams
the campus with the aim of finding their most preferred food
truck. Agent A’s preferences are strict (excluding equality,
non-comparability, or cyclical preferences) and stable (consis-
tent across time and location). The task operates in a partially
observable setting, limiting Agent A’s vision to the immediate
8 cells and integrating occluding walls (in grey) to increase
complexity. The task’s objective is to analyze Agent A’s move-
ment and infer their preference order for the food trucks, with
some level of uncertainty in the answers being acceptable.

As detailed in Fig. 4, each IR problem is categorized into
one of three distinct types, based on the actor’s trajectory
characteristics and the subsequent inference patterns.
• Intermediate: The actor concludes their route without ex-

ploring all food trucks. The selected one, which the actor
stops at, is inferred to be the most preferred among all.

• Last: The actor visits all available trucks, then select the last
seen (Y in Fig. 4) directly. This choice suggests a preference



(a) IR task (b) IR perception field (c) IIP task

(d) IIP Route A
Shortest

(e) IIP Route B
Avoidant

(f) IIP Route C
Reversed

(g) IIP Route D
Hybrid

Figure 3: Input stimuli examples for both tasks. (a) Scene layout
and actor’s trajectory in the IR task; (b) Agent perception field in IR;
(c) Scene layout for the IIP task; (d)-(g) Four potential routes for the
actor in the IIP task scenario. During testing, routes are randomly
shuffled to ensure unbiased assessment.

(a) Intermediate (b) Last (c) Previsited

Figure 4: IR task types. (a) Intermediate: represented by M ą
tX,Y, Z,Nu, indicates that M is preferred over the others X , Y , Z,
and N ; (b) Last: Characterized by Y ą tX,Z,Mu, suggests that
Y is chosen last among the visible options, leaving the preference
for the absent N as uncertain; (c) Previsited: depicted as N ą Z ą
tX,Y,Mu, the actor revisits and chooses Z after seeing all options,
implying preference for N over Z, and Z over X , Y , and M .

order of Y ą tX,Z,Mu. However, the preference for the
absent truck N remains undetermined.

• Previsited: After viewing all trucks, the actor retraces steps
to a previously seen truck, such as Z. This behavior indicates
a preference hierarchy where N ąZątX,Y,Mu.

These types include distinct strategies and decision-making
processes, offering diverse insights into the actor’s preference
and cognitive mechanisms in social intelligence evaluation.

Task 2: Inverse Inverse Planning (IIP)
As illustrated in Fig. 3c, the setting for the IIP task involves a
5 ˆ 5 grid campus, two distinct restaurants X and Y (colored
red and blue, respectively), and occluding walls (grey) on map.
In this scenario, an agent A (marked in green), knowing the
locations of both restaurants, prefers dining at X . The goal for
A is to demonstrate this preference to an observer B through
her movement route. She should express her preference on X
as early and unambiguous as possible, while also minimizing
the travel length. It is assumed that A is aware of B being
cooperative and capable of implicit understanding.

Given the limitations of GPT-4 in route planning within grid
environments (Borji, 2023; Bubeck et al., 2023), the IIP task
(Fig. 3(c)) is structured as a multiple-choice problem rather

(a) Type I (b) Type II (c) Type III (d) Type IV

Figure 5: IIP task types with Hybrid routes. (a) Type I: Cyclic route,
revisiting a location and passing an alternative restaurant Y ; (b) Type
II: A cyclic route that does not entail passing through the vicinity of
restaurant Y ; (c) Type III: An acyclic route passing by the alternative
restaurant Y ; (d) Type IV: An acyclic route that avoids the vicinity
of restaurant Y . Each type presents distinct problem patterns and
difficulties for the actor to communicate their preference.

than route generation. The four candidate routes (Fig. 3(d-
g)) are generated by algorithms (see appendix). In terms of
the four cognitive dimensions: (1) rationality, (2) perspec-
tive switching, (3) counterfactual reasoning and (4) cognitive
flexibility, Shortest shoots at the shortest route to goal X ,
demonstrating (1) but no other dimensions; Avoidant avoids
restaurant Y at the cost of route length, showing (1)(2)(3)
but no (4); Reversed signals “I am not choosing Y ” by first
arriving at Y and then leaving Y for X , with (1)(2)(3) but
no (4); Hybrid first uses a “stepping away and back” strategy
to quickly signal “my real goal is X rather than the nearer
Y ” at minimal route length cost, demonstrating (1)(2)(3)(4).
Moreover, each IIP problem is classified into one of four types
(Type I-IV) based on route Hybrid as elaborated in Fig. 5.

Two environments and datasets were constructed for IR and
IIP tasks, categorized by their respective problem types. The
IR dataset has 487 instances: 283 Intermediate, 86 Last, and
118 Previsited instances. The IIP dataset contains four types
(I-IV), with 106, 135, 125, and 134 instances in each type,
totaling 500 instances. Theoretically, the generation algorithms
can generate all conceivable scenarios for both tasks.

Computational Framework
Our computational framework for social dynamics employs re-
cursive Bayesian inference, effectively unifying the modeling
of both IR and IIP tasks. This framework’s hierarchical struc-
ture stems from recursive social reasoning about mental states
(De Weerd et al., 2017, 2022). Zero-order ToM represents an
egocentric viewpoint without understanding others’ mental
states (e.g., “I want a banana”). First-order ToM involves infer-
ring others’ mental states (e.g., “I think he wants a banana”),
while second-order ToM adds another layer of recursive infer-
ence (e.g., “I think that he thinks that I want a banana”). This
multi-layered approach to mental state inference provides a
means to analyze various levels of social interaction and assess
the progress in artificial social intelligence.

In our model, as depicted in Fig. 1, we designate roles of
actor i and observer j. The term “forward planning” refers
to actor i devising action ai based on their 0th-order mind
mi. “Inverse reasoning” describes actor i deducing their 1st-
order mind mij—their perception of observer j’s mental state
mj—from j’s action aj . “Inverse inverse planning” is a higher-
order planning process incorporating inverse reasoning where
actor i simulates how observer j might interpret i’s intent
(m̃ji) from action ãi and selects action ai to effectively com-
municate a specific intent. This process involves the 2nd-order



(a) (0.3, 1) (b) (0.99, 1) (c) (0.3, 100) (d) (0.99, 100)

Figure 6: Model predictions based on posterior probability over
parameters e´α and e´β on one example (Fig. 3(c-g)). The re-
gions are designated according to the route types with the highest
posterior. The color intensity within each region indicates the proba-
bility gap between the most likely and the second-most likely options,
effectively visualizing the model’s confidence in its predictions. Four
figures are labeled by values of parameters pexpp´θq, δq.

mind mipjiq and exemplifies advanced human social intelli-
gence. Although real-life social interactions are varied, we
argue that our framework captures the core essence of most
social dynamics.

General Framework: Recursive Bayesian

Consider an actor i, an observer j, and the “hypotheses set”
H as a set of elements h, each representing the information
to be passed from i to j, e.g. actor i’s preference in the IR
task and their chosen target in the IIP task. Hypotheses are
passed via routes γ P Γ in the grid. The recursive nature of
our Bayesian framework emerges when ToM is integrated.
This recursion reflects the agents’ awareness of each other.
Following Yang et al. (2018) and Wang et al. (2020), a two-
agent recursive Bayesian system is defined at all orders, with
each level depending on the inference made at the previous
one, thus forming a sequential chain. We adopt the sequence
that starts with actor i acting independently at order 0, cor-
responding to a prior belief about Γ. Subsequently, observer
j makes inferences at order 1, followed by actor i adjusting
their behavior at order 2, and so on, as shown in Algorithm 1.
This choice of sequence aligns with the notion of actor i ini-
tially acting “freely” and the subsequent orders representing
iterative inferences and reactions between the agents.

Precisely, Algorithm 1 describes a belief drifting procedure
in an iterative way. On even terms, the actor starts from the
prior on routes Pppγq. When considering the observer, the
actor may choose to infer the observer’s choice in mind, and to
think 2k steps deeper resulting in a belief P2kpγ|hq. Similarly,
the observer construct the odd terms P2k`1ph|γq using the
same strategy. The recursive explanation is, once an actor
decides to think in order 2k (similar for observer in order
2k+1), the final Bayesian posterior Pipγ|hq depends on the
(2k-1)-st posterior Pijph|γq on all possible γ where Pij means
“j in i”. Then, Pijph|γq depends on Pijipγ|hq of order 2k-2,
the “(i in j) in i” point of view, until order 0 where M and
prior can be used.

IR as Preference Inference: Odd-Order Inference In
the IR task, the hypothesis set H consists of full permutations
of tuple pX,Y, Z,M,Nq. A hypothesis h “ pY ąM ąZ ą

N ąXq has an array form, namely hr0s “ Y , hr1s “ M , etc.
For the set Γ of possible routes, we concentrate on the explo-
ration order of trucks and the final decision. Among all such
equivalent routes with same visiting order, we take the shortest

one, thus route lengths are bounded by p4` 1q ˆ p5ˆ 5q1, and
Γ is finite. The task is for observer to infer the preference of
actor, thus the result is an odd term in Algorithm 1.

IIP as Intentional Planning: Even-Order Inference
The output of IIP is a posterior probability across four possi-
ble routes (an even term in Algorithm 1), denoted as Pipγ|hq.
The hypothesis set H is limited to tX,Y u, and the route set Γ
consists of the options {Reversed, Shortest, Avoidant, Hybrid}.

Algorithm 1: Iterative Bayesian Inference
Input: Agents i, j, likelihood M , priors Pppγq, Ppphq.
Output: Posteriors

`

Pppγq,P1ph|γq,P2pγ|hq, ...
˘

.

1 Initialize: P0
i pγ|hq9Mpγ, hq, k “ 0.

2 for k “ 0 to 8 do
3 P2k`1ph|γq :“ P2kpγ|hqPpphq{Ppγq

4 P2k`2pγ|hq :“ P2k`1ph|γqPppγq{Pphq

5 end
6 return

`

Pppγq,P1ph|γq,P2pγ|hq, ...
˘

.

Detailed Construction for IR and IIP
Now we construct in detail the likelihoods and priors men-
tioned above, in a unified way, for both IR and IIP to complete
the model. As γ is considered as a temporal signal sequence for
h, the agent’s sensitivity to signal urgency, cost and intensity
are used as key factors for a unified construction.

We adopt a uniform distribution as the prior over H, while
the prior over Γ is a Gibbs distribution of route lengths refer-
ring to the total cost: Ppγq9e´α¨|γ|. Parameter α controls the
sensitivity on cost. For the likelihood, let

Mpγ, hq9
ÿ|γ|´1

k“1
φpγr0:k`1s, hqe´βk, (1)

where the route segment from 0-th position to t-th (γr0:t`1s) is
an element of the temporal signal at time t. The parameter β
measures the urgency by the decay factor e´βk to the intensity
of each route segment γr0:k`1s represented by φ.

The function φ represents the stimulus intensity, namely
how likely a partial route indicates certain hypothesis. It is
set to be a function to gain flexibility for both various tasks
on the grid world and various styles of agents. A common
setting could be φ “ φ` `φ´ the sum of accumulation effect
φ` and elimination effect φ´, both depending on task details.
Next, we provide constructions for IR and IIP, respectively.

Model for IR Following the settings of IR, cost sen-
sitivity α is 0, according to the assumption that the actor
looks for favourite on the map regardless of cost. The sig-
nal urgency β is ´8, since the whole route is available
to the observer directly. For φ, let V “ tX,Y, Z,Mu be
set of all visible trucks, Spγq Ă V be set of trucks ever
seen, Epγq Ă Spγq be those seen but not chosen directly,
and φ`pγr0:k`1s, hq “ 1tγrksPVuXtEpγr0:k`1sqă4upγr0:k`1sq ¨

1th:γrks“hr0suphq points out favourite, φ´pγr0:k`1s, hq “

1tγrksPVuXtSpγr0:k`1sq“4upγr0:k`1sq ¨ 1th:hr0s“N,γrks“hr1suphq

14+1 represents the 4 route segments in exploring the 4 trucks, plus a
possible final segment to the chosen one; each route segment is no
longer than the total amount of cells 5 ˆ 5.



considers what are not preferred. Here 1Xpxq is the indica-
tor function. It can be shown that h’s with nonzero posterior
match the analysis in previous section.

Model for IIP We set φ “ φ` ` φ´, where φ` is
modeled using a recursive coloring strategy (see appendix),
influenced by a color-level amplification factor θ, of form
φ`pγr0 : k ` 1s, hq “ e´θℓhpγrksq, while φ´ represents a
‘negating’ mechanism controlled by a leaving-target pulse δ,
i.e., φ´pγr0 : k`1s, hq “ δ1γrk´1sPH´thupγr0 : k`1sq, sig-
nifying a firm rejection of the other target. Fig. 6 demonstrates
the model’s behavior at order 2 for the IIP problem described
in Fig. 3, under varying parameters. It shows that appropriate
settings of φ (e.g., e´θ “ 0.99 and δ “ 100) allow varying
α and β to generate all four choices, validating the model’s
reasonableness and expressiveness in IIP tasks.

Experiments
Our Model Implementation We developed our Bayesian

model using Python, with PyTorch employed for gradient
methods in MLE regression.

Human Participant Study Our study involved 75 partici-
pants who completed both the IR and IIP tasks, presented in a
randomized order. For the IR task, each participant answered
two questions from each of the three problem categories (In-
termediate, Last, Previsited), and then answered two more
questions following a Previsited-type example. The IIP task
consisted of a 4 ˆ 1 ` 2 format, where individuals first re-
sponded to one question from each of the four Types (I-IV)
and then answered two more questions following a Type III
example. Participants were randomly assigned to either a text-
only or an image-enhanced multimodal version, labeled ‘hu-
man(text)’ and ‘human(image)’ respectively. The experiment
concluded with a debriefing session for all participants.

LLMs Evaluation We evaluated GPT-3.5-Turbo2, GPT-
4-Turbo3, and GPT-4 (OpenAI, 2023), on the IR and IIP tasks
completely aligning to the text version of human study. Each
problem of the entire problem database is tested in both zero-
shot and one-shot settings, in a single round of conversation.

Results and Analysis
The evaluation of the IR task shows the accuracy under various
criteria and across different problem types for all participant
groups, as illustrated in Fig. 7. Similarly, for the IIP task,
Fig. 8 presents the statistical distributions under zero-shot or
one-shot settings as well as across “overall” (aggregating four
types) and type-specific settings.

Results indicate GPT-3.5-Turbo’s inability to grasp the tasks.
GPT-4 variants exhibited a pronounced tendency to select
Shortest in IIP. In zero-shot settings, the GPT series displayed
constrained counterfactual reasoning abilities, struggling with
the concept of an unseen ‘N ’ (as shown in ‘Visible’ and ‘Strict’
categories in Fig. 7(a) and the Previsited category in Fig. 7(c)).
This suggests that GPT-4’s capability in active ToM may not
extend beyond a superficial level. Furthermore, GPT-4’s one-
shot enhancements were observed only in IR tasks matching

2https://openai.com/blog/chatgpt
3https://openai.com/blog/new-models-and
-developer-products-announced-at-devday
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Figure 7: Accuracy on the IR Task. In (a) and (b), “Favorite” as-
sesses accuracy for the top preference only, “Visible” for the prefer-
ence order among tX,Y, Z,Mu, and “Strict” for the entire prefer-
ence order. In (b) and (d), we uniformly use a Previsited type case as
the one-shot learning example. In (c) and (d), accuracies are evaluated
solely based on the “Strict” criterion.

the example’s type and were virtually absent in IIP tasks. This
pattern implies that GPT-4’s performance may not stem from
an in-depth ToM understanding. The analyses from Fig. 8
show that human participants generally exhibited ToM abilities
at order ě 2, i.e., preferring route Hybrid and showing all four
cognitive dimensions (see Task 2: Inverse Inverse Planning
(IIP)). Following the one-shot example, human performance
improved across all IR categories, and there was a notable
decline in the choice of Shortest options in IIP. This indicates
a significant learning and generalization capability in social
cognition tasks among humans.

Text vs. Image: Multimodal Capabilities Our focused
case study (see appendix) indicates that image inputs to GPT-
4V4 fails to significantly enhance GPT capabilities, which still
exhibit a considerable gap compared to human performance.

IIP Preference Regression Applying MLE to IIP test
data (including LLMs, individual human subjects, and the hu-
man average) allows for the regression of parameters within
our model framework (Eq. (1)). Setting e´θ “ 0.99, δ “ 100,
we plot the likelihoods of α, β for both humans and GPT-4
models in Fig. 9 (a-b), with regression outcomes depicted in
(c-d). The patterns between humans and LLMs diverge signif-
icantly. Additionally, referencing Fig. 6 reveals that despite
considerable variability among individuals, a majority of hu-
mans tend to prefer the Hybrid option. Conversely, GPT-4
displays a mixed preference for Shortest and Reversed, align-
ing with the observed statistics in Fig. 8.

4https://cdn.openai.com/papers/GPTV_System
_Card.pdf.

https://openai.com/blog/chatgpt
https://openai.com/blog/new-models-and-developer-products-announced-at-devday
https://openai.com/blog/new-models-and-developer-products-announced-at-devday
https://cdn.openai.com/papers/GPTV_System_Card.pdf
https://cdn.openai.com/papers/GPTV_System_Card.pdf
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Figure 8: Distribution of Options in IIP. The numerical values at
top of each bar represent the respective test counts. In (b) and (d), we
uniformly use a Type III case as the one-shot learning example.
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Figure 9: IIP modeling results. (a-b) Likelihood landscapes in the
α-β dimension (e´θ

“ 0.99, δ “ 100), comparing “human average”
with “GPT-4”; region boundaries and labels are calculated as in Fig. 6
on the whole dataset. (c-d) Regression for human average, LLMs
and individual humans, mapped onto two planes respectively.

Shortcuts in IR and IIP Tasks We investigated whether
LLMs rely on pattern recognition (shortcuts) rather than gen-
uine social intelligence in tackling IR and IIP tasks. In the IR
task, using the grid environment layout and trajectory as input,

we post-finetuned a small model T5 (Raffel et al., 2020) on
specific task types and evaluated the IR task accuracy under
“strict” cirterion across all types. As demonstrated in Tab. 1,
when trained on all task types, T5 can achieve high task ac-
curacy across all task types; but, its performance on IR task
significantly drops to 0 when certain task types are absent in
training, unlike humans who can achieve high task accuracy
in “zero-shot” and “one-shot” setting (Fig. 7(c)(d)). For the
IIP task, we perform two route classification tasks. Firstly, we
use only routes and no task contexts as input and route types
as labels for the overall classification test on T5; as shown in
Tab. 2, T5 achieves very high performances, indicating clear
pattern differences among different types of routes, which
might be a shortcut for machines to memorize the better an-
swer without analyzing the specific IIP task. Secondly, we
perform a task-type-specific version of route type classifica-
tion test on T5, using the grid environment layout and four
candidate routes as input, and the corresponding four-route-
type-in-order sequence as the label. As demonstrated in Tab. 3,
there are also significant performance drops when T5 meets
certain task type for the first time in testing without any data
of that type in training. These shortcut experiments illustrate
that, even if model finetuning on our data achieves high per-
formance in the two tasks, it is insufficient to conclude that
the model possesses strong social intelligence capabilities-it
may only memorize the surface pattern shortcuts without deep
reasoning; and unlike humans, it can not transfer its ability
to unseen cases. Thereby, we should pay more attention to
model’s zero-shot and few-shot learning abilities.

Table 1: IR shortcuts analysis. We use IR task accuracy (%) under
the “strict” criterion as the metric.

Intermediate Last Previsited Avg

Overall 92.57 97.14 100.00 96.60
w/o Last 81.27 0.00 95.76 59.00
w/o Intermediate/Last 0.00 0.00 100.00 33.33
w/o Last/Previsited 100.0 0.00 0.00 33.33

Table 2: IIP shortcuts analysis for basic options. We use route type
classification accuracy (%) as the metric.

Reversed Shortest Avoidant Hybrid Avg

Overall 99.4 95.2 91.0 94.2 94.9

Table 3: IIP shortcuts analysis. We use route type classification
accuracy (%) as the metric.

Type I Type II Type III Type IV Avg

Overall 98.11 100.00 91.66 79.39 92.00
w/o Type I 94.33 98.47 94.69 90.07 94.40
w/o Type II 99.05 66.41(-33.59) 90.90 82.44 84.00
w/o Type III 100.00 99.23 52.27(-39.39) 83.96 83.00
w/o Type IV 100.00 100.00 96.21 35.87(-43.52) 82.20
w/o Type I,II 65.09(-33.02) 13.74(-86.26) 87.88 81.68 62.00
w/o Type III,IV 100.00 100.00 36.36(-55.3) 4.58(-74.81) 58.20

Conclusion
We introduced a comprehensive benchmark for evaluating
social intelligence, comprising a unified computational frame-
work, representative tasks, and evaluation criteria. Our results
demonstrate a marked superiority of humans over LLMs in
social intelligence tasks. We hope that our study contributes
valuable information towards the advancement of ASI.
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