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Fig. 1. Ferrofluid simulation using the Induce-on-Boundary (IoB) magnetostatic solver. A ferrofluid placed between two magnets is magnetized by the lower
magnet initially, forming ground spikes. Then, a second magnet on top elevates a portion of the fluid, creating ceiling spikes. Afterward, the lower magnet is
removed, causing the fluid to be attracted to the upper magnet. Finally, removing the top magnet allows the ferrofluid to fall back.

This paper introduces a novel Induce-on-Boundary (IoB) solver designed to
address the magnetostatic governing equations of ferrofluids. The IoB solver
is based on a single-layer potential and utilizes only the surface point cloud
of the object, offering a lightweight, fast, and accurate solution for calculat-
ing magnetic fields. Compared to existing methods, it eliminates the need
for complex linear system solvers and maintains minimal computational
complexities. Moreover, it can be seamlessly integrated into conventional
fluid simulators without compromising boundary conditions. Through exten-
sive theoretical analysis and experiments, we validate both the convergence
and scalability of the IoB solver, achieving state-of-the-art performance.
Additionally, a straightforward coupling approach is proposed and executed
to showcase the solver’s effectiveness when integrated into a grid-based
fluid simulation pipeline, allowing for realistic simulations of representative
ferrofluid instabilities.

CCS Concepts: • Computing methodologies→ Physical simulation; •
Applied computing→ Physics.

Additional Key Words and Phrases: Ferrofluid Simulation, Magnetostatics,
Boundary Integral Equations, Single-Layer Potential, Free-Surface Flows

∗joint first authors
†corresponding authors

Authors’ addresses: Xingyu Ni, nixy@pku.edu.cn, School of CS & State Key Laboratory
of General Artificial Intelligence, Peking University, Beijing, China; Ruicheng Wang,
wrc0326@outlook.com, Yuanpei College, Peking University, Beijing, China; Bin Wang,
binwangbuaa@gmail.com, State Key Laboratory of General Artificial Intelligence,
Beijing Institute for General Artificial Intelligence (BIGAI), Beijing, China; Baoquan
Chen, baoquan@pku.edu.cn, School of IST & State Key Laboratory of General Artificial
Intelligence, Peking University, Beijing, China.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2024/7-ART56 $15.00
https://doi.org/10.1145/3658124

ACM Reference Format:
Xingyu Ni, Ruicheng Wang, Bin Wang, and Baoquan Chen. 2024. An Induce-
on-Boundary Magnetostatic Solver for Grid-Based Ferrofluids. ACM Trans.
Graph. 43, 4, Article 56 (July 2024), 14 pages. https://doi.org/10.1145/3658124

1 INTRODUCTION
Ferrofluids, colloidal solutions of nanoscale magnetic particles, have
attracted extensive attention in recent years due to their unique
physical mechanisms and practical applications in materials [Liu
et al. 2019; Zhang et al. 2019], robotics [Fan et al. 2020, 2022], and
artistic creation [Kodama 2008; Yetisen et al. 2016]. Since the sem-
inal work of Huang et al. [2019], both magnetostatics and hydro-
dynamics that govern ferrofluids have been effectively harnessed
within the realm of computer graphics, as evidenced by a series of
simulation frameworks. These frameworks effectively capture the
dynamics of ferrofluids with the complex interplay of three distinct
forces—gravity, magnetic force, and fluid surface tension—and suc-
cessfully reproduce the formation of characteristic spike structures,
a phenomenon known as normal-field instability [Rosensweig 1997].

However, the existing methodologies exhibit two primary short-
comings (see Table 1): first, the necessity of implementing sophis-
ticated linear system solvers (e.g., GMGPCG [Ni et al. 2020] and
preconditioned GMRES [Huang and Michels 2020]); second, the
constrained scalability due to non-optimal modeling and discretiza-
tion (e.g., volumetric force models [Huang et al. 2019; Shao et al.
2023], large number of variables [Ni et al. 2020], and unavoidable
dense matrices [Huang and Michels 2020]). These two obstacles
substantially hinder the seamless integration of magnetostatics as a
plug-and-play module into the conventional pipeline of fluid sim-
ulation. Furthermore, certain approaches also face issues related
to physical accuracy, such as the smearing of liquid-air interfaces
[Huang et al. 2019; Ni et al. 2020; Shao et al. 2023], the failure to
meet boundary conditions at infinity [Ni et al. 2020], and the neglect
of fluid vorticity [Huang and Michels 2020].
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Table 1. Comparisons between the IoB and existing magnetostatic solvers. The fluid simulation part of these frameworks is not compared here. In each
column, the cells with properties that are preferred due to correctness or simplicity are colored light green.

Approach Force type† Physical accuracy Linear system Computational complexity‡
Sharp interface BC at infinity Sparsity Method Time Space

SPH [2019; 2023] Volumetric No Yes Dense CG squared O(𝐾𝑁
√
𝑁 ) O(𝑁

√
𝑁 )

Grid-based [2020] Interfacial No No Sparse GMGPCG O(𝐾𝑁
√
𝑁 ) O(𝑁

√
𝑁 )

Surface-only [2020] Interfacial Yes Yes Dense Preconditoned GMRES O(𝐾𝑁 2) O(𝑁 2)
IoB (ours) Interfacial Yes Yes Dense Fixed-point iterations O(𝐾𝑁 ) O(𝑁 )

† Magnetic interactions are ubiquitous. The terms "volume" and "interface" are used solely to designate the solution domain of the numerical method.
‡ 𝐾 denotes the number of iterations, and 𝑁 denotes the number of discrete points at the fluid–air interface. For SPH methods, 𝑁

√
𝑁 ≈ 𝑁p , where 𝑁p denotes the number of

SPH particles; for the grid-based method, 𝑁
√
𝑁 ≈ 𝑛3 , where 𝑛 is the grid resolution.

We present a lightweight, fast, and accurate magnetostatic solver
that iteratively computes the magnetic field upon fluid surfaces, in-
spired by recently proposed algorithms based on boundary integral
equations (BIEs) [Miller et al. 2023; Sawhney et al. 2023; Sugimoto
et al. 2023]. When subjected to an external magnetic field, our it-
erative computation scheme can be conceptually understood as a
series of successive inductions of the internal field within infinitesi-
mally small time intervals. Consequently, we term this solution the
Induce-on-Boundary (IoB) approach, whose convergence has been
theoretically proved in the paper. Our IoB solver is implemented in a
matrix-free manner, relying solely on straightforward equations of
the single-layer potential and without the need for preconditioning.
In comparison to existing methods, the IoB solver, enhanced by
a Fast Multipole Method (FMM), boasts the lowest computational
complexity, making it exceptionally well-suited for handling large-
scale simulation scenarios. Furthermore, thanks to the inherent
advantages derived from our chosen BIEs, there is no requirement
for non-physical approximations. This IoB magnetostatic solver is
capable of efficiently and accurately determining the pressure jump
at the liquid-air interface due to magnetic interactions, which is
demonstrated to naturally couple with grid-based fluid simulation
[Bridson 2015] via extensive experiments.

Contributions. Our technical contributions are
• The theory of Induce-on-Boundary discretization,
• Analysis on convergence of the numerical scheme,
• Implementation of the IoB solver for grid-based fluids,
• Scalability and accuracy validations through experiments.

2 RELATED WORK
Free-surface fluid simulation. Since the seminal work of Foster and

Fedkiw [2001], the simulation of fluid phenomena with free surfaces
has emerged as a popular research area in computer graphics. A
broad spectrum of interfacial effects, such as foams and bubbles
[Deng et al. 2022; Ishida et al. 2017; Ram et al. 2015; Wang et al. 2021;
Wretborn et al. 2022], chemical reaction [Kang et al. 2007; Ren et al.
2014], viscous coiling [Larionov et al. 2017; Panuelos et al. 2023],
and waves [Ando and Batty 2020; Huang et al. 2021; Jeschke and
Wojtan 2023], etc., have been successfully simulated through the
invention of many high-performance numerical solvers. According
to the surface tracking methods employed, these solvers fall into
two primary categories: grid-based and particle-based approaches.
The former [Chentanez and Müller 2014; Goldade et al. 2016; Li
et al. 2023; Narita and Ando 2022] typically rely on the level-set

method [Osher and Fedkiw 2005] that implicitly captures smooth
and consistent surfaces, while the latter, e.g., PBD [Macklin and
Müller 2013; Xing et al. 2022], SPH [Koschier et al. 2022], PIC/FLIP
[Chen et al. 2020; Ferstl et al. 2016; Kugelstadt et al. 2021; Wang et al.
2020; Zhu and Bridson 2005], and MPM [Chen et al. 2021; Hyde
et al. 2020; Tampubolon et al. 2017], excel at preserving volume
through surface reconstruction from particles. To deal with surface-
tension-dominated fluids (e.g., ferrofluids), grid-based approaches
are often easier choices because accurate, smooth curvatures are
provided with little effort. Additionally, mesh-based approaches
[Bojsen-Hansen and Wojtan 2013; Da et al. 2014, 2015, 2016; Wojtan
et al. 2011; Zhu et al. 2015b, 2014] are critical alternatives due to their
strengths in both surface tracking and volume preservation, but the
relatively high computational complexity is the main weakness.

Magnetic simulation. In the computer graphics community, the
simulation of magnetic effects is pioneered by Thomaszewski et al.
[2008] through rigid body animations. After that, Kim et al. [2020;
2018] proposedmagnetization dynamics inspired bymicromagnetics
to produce more realistic results, which further enables large-scale
simulation of inducible magnets with fast stabilization techniques
[Kim and Han 2022]. For non-rigid materials, Sun et al. [2021] ex-
tended MPM to simulate nonlinearly magnetized viscoelastic bodies,
and Chen et al. [2022] successfully explored the simulation and op-
timization of hard-magnetic thin shells. All these frameworks incor-
porate volumetric magnetic interactions in their modeling. In term
of ferrofluids, based upon procedural modeling of the normal-field
instability [Ishikawa et al. 2013], Huang et al. [2019] made signifi-
cant advancements by introducing an SPH-based solution for the
first-principles simulation. This weakly compressible scheme was
subsequently improved by the divergence-free SPH [Shao et al. 2023].
Both of the frameworks rely on volumetric force models in mag-
netostatics. In contrast, Ni et al. [2020] proposed the utilization of
interfacial magnetic forces as an equivalent replacement of volumet-
ric ones, whose conciseness and effectiveness are validated through
grid-based ferrofluid simulations. The interfacial force model was
also implemented in the work of Huang and Michels [2020], which
is integrated into the surface-only liquid solver [Da et al. 2016] with
mesh-based surface tracking.

BIE-based algorithms. Algorithms based on boundary integral
equations have demonstrated their effectiveness in a variety of sim-
ulation applications, such as deformable bodies [James and Pai 1999;
Sugimoto et al. 2022], brittle fractures [Hahn and Wojtan 2015, 2016;
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Fig. 2. When exposed to a magnet approximated as a dipole positioned beneath it, a blob of ferrofluid steadily shape itself into radial spikes aligned with the
orientation of the magnetic field.

Zhu et al. 2015a], liquids [Da et al. 2016; Huang and Michels 2020],
and ocean waves [Huang et al. 2021; Keeler and Bridson 2015]. These
algorithms generally convert the governing equations into BIEs and
subsequently discretize object surfaces into boundary elements for
numerical solution. Another interesting application is in acoustics
[James et al. 2006; Umetani et al. 2016], where equivalent source
methods resulting in least-squares BIE solves have succeeded in
sound synthesis for both liquids and rigid-body fractures [Zheng
and James 2009, 2010]. Apart from these, BIE-based algorithms have
also been extensively studied for solving the rendering equation
[Kajiya 1986], where stochastic methods, e.g., Monte–Carlo ray trac-
ing [Pharr et al. 2023], are preferable due to their scalability. These
methods provide a point of view to discover and exploit properties
of the underlying BIEs, which enables invention of approaches in-
between stochastic methods and boundary element methods (BEMs)
like radiosity [Cohen et al. 1993; Keller 1997] and point-based global
illumination (PBGI) [Christensen 2008]. Transferred from the ren-
dering tasks, recent studies on Walk-on-Spheres (WoS) [Miller et al.
2023; Sawhney et al. 2023] andWalk-on-Boundary (WoB) [Sugimoto
et al. 2023] reveal the possibility of using Monte–Carlo techniques
for solving boundary value problems associated to Laplace’s and
Poisson’s equations through BIEs.

3 BACKGROUND
In this section, we briefly review the background of ferrofluid sim-
ulation, which generally follows the work of Huang et al. [2019]
and Ni et al. [2020] (see §A for details). Main symbols involved
throughout the text is listed in Table 2.

3.1 Magnetostatics
Given the ferrofluid volume𝛺 (as an open set in 3D Euclidean space)
and its surface 𝜕𝛺 , the magnetic field 𝑯 (𝒙) (𝒙 ∈ R3) is regarded
as the summation of an applied external field 𝑯app and an induced
internal field 𝑯ind:

𝑯 (𝒙) = 𝑯app (𝒙) + 𝑯ind (𝒙), (1)

in which 𝑯app is known. Under the zero-current assumption, 𝑯ind
is determined by a special case of Maxwell’s equations as{

∇ · 𝜇0 (𝑯ind +𝑴) = 0, (2)
∇ × 𝑯ind = 0, (3)

where 𝜇0 is the vacuum permeability, and the magnetization, de-
noted 𝑴 (𝒙), is determined by

𝑴 =

{
𝜒𝑯 , 𝒙 ∈ 𝛺 , (4a)
0, 𝒙 ∉ 𝛺 ∪ 𝜕𝛺 , (4b)

Table 2. Main symbols involved throughout the text. Each denotes a geo-
metric attribute or a physical quantity. For readers’ convenience, whether
an attribute or a quantity is to be solved within the IoB method or the con-
ventional fluid simulation is indicated in the table, where two ‘no’s imply
that it is a constant or a parameter.

Symbol† Definition To be solved
IoB Fluid

𝑯 Magnetic field Yes No
𝑯app Applied magnetic field No‡ No‡
𝑯ind Induced magnetic field Yes No
𝜇0 Vacuum permeability No No
𝑴 Magnetization Yes No
𝜒 Susceptibility of ferrofluid No No
𝜓 Magnetic scalar potential Yes No
𝒏 Normal of fluid surface No Yes
𝒖 Velocity of fluid No Yes
𝑝 Pressure of fluid No Yes
𝜌 Density of fluid No No
𝒈 Gravitational acceleration No No
𝛾 Surface tension of fluid No No
𝜅 Mean curvature of fluid surface No Yes
𝜙 Single layer potential density Yes No
𝛼 Reduced permeability No No

† Scalars and vectors are symbolized by italic and bold letters, respectively.
‡ 𝑯app is given in advance but not necessarily constant.

provided that the ferrofluid is isotropic and linearly magnetized
with a constant susceptibility 𝜒 (𝜒 > 0).

Since 𝑯ind is conservative (see (3)), we can define 𝑯ind = −∇𝜓 ,
where 𝜓 (𝒙) (𝒙 ∈ R3) is a continuous scalar potential, such that
Gauss’s law for magnetism (2) can be reformulated as


∇
2𝜓 = 0, 𝒙 ∉ 𝜕𝛺 , (5)
𝜕𝜓

𝜕𝑛

����
+
+ 𝜒𝑯app · 𝒏 = (1 + 𝜒) 𝜕𝜓

𝜕𝑛

����
−
, 𝒙 ∈ 𝜕𝛺 , (6)

𝜓 → 0, ∥𝒙 ∥ → ∞, (7)

which is Laplace’s equation (5) subject to the boundary conditions
at interface (6) and at infinity (7). According to (6), there is a jump
of the derivative 𝜕𝜓/𝜕𝑛 = ∇𝜓 · 𝒏 (𝒏 is the outward-pointing normal)
across the interface, causing the normal components and further
the values of 𝑯ind and 𝑯 to be discontinuous at 𝜕𝛺 . For the sake
of brevity, we use the negative and positive signs to indicate the
ferrofluid side and the outer side, respectively.
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Fig. 3. A magnetized iron ball attracts the surrounding ferrofluid, causing it to form spike structures on its surface.

3.2 Hydrodynamics
Given the solved magnetic field 𝑯 , the free-surface flow of an in-
compressible inviscid ferrofluid is governed by the Euler equations

𝜌

(
𝜕𝒖

𝜕𝑡
+ (𝒖 · ∇)𝒖

)
= −∇𝑝 + 𝜌𝒈, 𝒙 ∈ 𝛺 , (8)

subject to ∇ · 𝒖 = 0 and the boundary conditions{
𝑝 − 𝑝air = 𝑝c − 𝑝m, 𝒙 ∈ 𝜕𝛺 ∩ 𝜕𝛺a, (9)
𝒖 · 𝒏 = 𝒖solid · 𝒏, 𝒙 ∈ 𝜕𝛺 ∩ 𝜕𝛺s, (10)

where 𝒖 (𝒙, 𝑡) is the velocity, 𝑝 (𝒙) is the pressure, 𝜌 is the density,
and 𝒈 is the gravitational acceleration. Here we use 𝜕𝛺a and 𝜕𝛺s to
denote boundaries of the air and solid regions, respectively, such
that 𝜕𝛺 ∩ 𝜕𝛺a indicates the free surface and 𝜕𝛺 ∩ 𝜕𝛺s indicates
the solid-liquid interface. Note that the air pressure 𝑝air is zero in a
free-surface model.
In (9), the capillary pressure 𝑝c is determined by the surface

tension 𝛾 and the mean curvature 𝜅 as 𝑝c = 2𝛾𝜅, and the magnetic
pressure 𝑝m, as an alternative to the volumetric magnetic force of
isotropic linear materials [Ni et al. 2020], is calculated by

𝑝m =
1
2
𝜇0𝜒 ∥𝑯 ∥2 +

1
2
𝜇0 (𝜒𝑯 · 𝒏)2, 𝒙 ∈ 𝜕𝛺 ∩ 𝜕𝛺a. (11)

Considering the discontinuity, we denote 𝑯 and related symbols at
the interface to be ferrofluid-sided by default.

4 THE INDUCE-ON-BOUNDARY SOLVER
The IoB solver is designed to address the boundary value problem
of magnetostatics (5–7) in a numerical way. In this section, we
present the continuous formulations underpinning IoB, along with
the point-based numerical scheme. We then delve into an analysis
of its convergence and offer comparisons regarding computational
complexity.

4.1 The Single-Layer Potential
The solution𝜓 (𝒙) to Laplace’s equation (5) can be expressed as the
single-layer potential with an unknown density 𝜙 (𝑥):

𝜓 (𝒙) =
∬
𝜕𝛺

𝐺 (𝒙,𝒚) 𝜙 (𝒚) d𝐴𝑦 , (12)

where 𝐺 (𝒙,𝒚) = 1/(4𝜋 ∥𝒙 −𝒚∥) is a Green’s function for Poisson’s
equation associated with an infinite domain. The normal derivative
of𝜓 (𝒙) is then obtained by[

𝜕𝜓

𝜕𝑛
(𝒙)

]
±
=

∬
𝜕𝛺

𝜕𝐺

𝜕𝑛𝑥
(𝒙,𝒚) 𝜙 (𝒚) d𝐴𝑦 ∓

1
2
𝜙 (𝒙), 𝒙 ∈ 𝜕𝛺 , (13)

in which the directional derivative of 𝐺 (𝒙,𝒚) with respect to the
normal at 𝒙 is calculated as

𝜕𝐺

𝜕𝑛𝑥
(𝒙,𝒚) = 𝒏𝑥 · ∇𝑥𝐺 (𝒙,𝒚), (14)

∇𝑥𝐺 (𝒙,𝒚) =
1
4𝜋

𝒚 − 𝒙
∥𝒚 − 𝒙 ∥3

. (15)

The boundary condition at infinity (7) has been naturally imposed
here due to the particular form of Green’s function.

Taking the magnetic boundary condition (6) into account, we can
finally formulate a BIE [Lindholm 1980] that express the relation-
ships among the values of 𝜙 over the ferrofluid boundary:

𝜙 (𝒙)
2𝛼

= −
∬
𝜕𝛺

𝜕𝐺

𝜕𝑛𝑥
(𝒙,𝒚) 𝜙 (𝒚) d𝐴𝑦 + 𝑯app (𝒙) · 𝒏, 𝒙 ∈ 𝜕𝛺 , (16)

where 𝛼 = 𝜒/(2 + 𝜒) is the reduced permeability.
This BIE enables a rather simple strategy to calculate the normal

component of the ferrofluid-sided magnetic field as

𝑯 (𝒙) · 𝒏 = 𝑯app (𝒙) · 𝒏 −
[
𝜕𝜓

𝜕𝑛
(𝒙)

]
−

= 𝑯app (𝒙) · 𝒏 +
(
𝜙 (𝒙)
2𝛼
− 𝑯app (𝒙) · 𝒏

)
− 𝜙 (𝒙)

2

=
1
𝜒
𝜙 (𝒙), 𝒙 ∈ 𝜕𝛺 . (17)

In addition, the tangential derivative of𝜓 can be acquired by

𝜕𝜓

𝜕𝝉
(𝒙) =

∬
𝜕𝛺

(
∇𝑥 − 𝒏𝑥

𝜕

𝜕𝑛𝑥

)
𝐺 (𝒙,𝒚) 𝜙 (𝒚) d𝐴𝑦 , 𝒙 ∈ 𝜕𝛺 , (18)

because no discontinuity exists in the tangential direction, and then
we are able to assemble the ferrofluid-sided magnetic field as

𝑯ind (𝒙) = −
1
2
𝜙 (𝒙)𝒏 −

∬
𝜕𝛺

∇𝑥𝐺 (𝒙,𝒚) 𝜙 (𝒚) d𝐴𝑦 , (19)

𝑯 (𝒙) = 𝑯app (𝒙) + 𝑯ind (𝒙), 𝒙 ∈ 𝜕𝛺 , (20)

which satisfies the requirement for the magnetic pressure (11). For
detailed derivations, please refer to §B.1.

4.2 Point-Based Discretization
Provided that the ferrofluid surface 𝜕𝛺 is smooth and represented by
a point cloud, in which the 𝑖-th point has three attributes: position
𝒙𝑖 , normal 𝒏𝑖 , and control area Δ𝐴𝑖 , the IoB approach additionally
assigns the single-layer potential density 𝜙𝑖 to each point. Since
𝒏𝑥 · ∇𝑥𝐺 (𝒙,𝒚) tends to zero as 𝒚 approaches 𝒙 , the integral in (16)
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Fig. 4. A cubic magnet stably attracts 243 small metal balls, simulated by integrating our IoB solver into Bullet Physics SDK [Coumans 2015].

ALGORITHM 1: Point-based numerical scheme of the IoB solver
Input: the applied magnetic field 𝑯app (𝒙 ) and the point cloud with

attributes {𝒙𝑖 }, {𝒏𝑖 }, and {Δ𝐴𝑖 }.
Output: the magnetic field 𝑯 (𝒙𝑖 ) , evaluated at each point.
𝑘 ← 0;
for 𝑖 = 1→ 𝑁 do /* Initial guess */

𝜙𝑘
𝑖
← 2𝛼𝑯app (𝒙𝑖 ) · 𝒏𝑖/(1 + 𝛼 ) ;

repeat
𝑘 ← 𝑘 + 1;
for 𝑖 = 1→ 𝑁 do /* Accelerated by FMM */

𝜙𝑘
𝑖
← 2𝛼𝑯app (𝒙𝑖 ) · 𝒏𝑖 ;

for 𝑗 = 1→ 𝑁 do
if 𝑖 = 𝑗 then continue;
𝜙𝑘
𝑖
← 𝜙𝑘

𝑖
− 2𝛼𝒏𝑖 · ∇𝑖𝐺 (𝒙𝑖 , 𝒙 𝑗 ) 𝜙𝑘−1𝑗

Δ𝐴𝑗 ;

until
∑

𝑖 ∥𝜙𝑘𝑖 − 𝜙𝑘−1𝑖
∥ < 𝜀 /* 𝜀 is a tolerance */;

for 𝑖 = 1→ 𝑁 do /* Accelerated by FMM */
𝑯 (𝒙𝑖 ) ← 𝑯app (𝒙𝑖 ) − 𝜙 (𝑥𝑖 )𝒏/2;
for 𝑗 = 1→ 𝑁 do

if 𝑖 = 𝑗 then continue;
𝑯 (𝒙𝑖 ) ← 𝑯 (𝒙𝑖 ) − ∇𝑖𝐺 (𝒙𝑖 , 𝒙 𝑗 ) 𝜙 (𝒙 𝑗 ) Δ𝐴𝑗 ;

is not singular, such that (16) can be directly discretized as

𝜙𝑖 = −2𝛼
𝑁∑︁

𝑗=1, 𝑗≠𝑖

𝜕𝐺

𝜕𝑛𝑖
(𝒙𝑖 , 𝒙 𝑗 ) 𝜙 𝑗 Δ𝐴 𝑗 + 2𝛼𝑯app (𝒙𝑖 ) · 𝒏𝑖 , (21)

for all 𝑖 from 1 to 𝑁 where 𝑁 denotes the number of points.
We propose to solve (21) by fixed-point iterations due to its in-

trinsic property (see §4.3). After {𝜙𝑖 } is calculated, it is natural to
acquire 𝑯ind (𝒙𝑖 ) for each 𝑖 by similarly discretizing (19) as

𝑯ind (𝒙𝑖 ) = −
1
2
𝜙𝑖𝒏 −

𝑁∑︁
𝑗=1, 𝑗≠𝑖

∇𝑖𝐺 (𝒙𝑖 , 𝒙 𝑗 ) 𝜙 (𝒙 𝑗 ) Δ𝐴 𝑗 . (22)

Note that the summation terms in (21) and (22) both can be acceler-
ated by FMM. The algorithm is summarized in Alg. 1, which can be
seen as a scheme of the Nyström method [Tong and Chew 2020].
In addition, overly close point pairs may cause numerical is-

sues, an effective workaround is replacing 𝐺 (𝒙,𝒚) by �̃� (𝒙,𝒚) =
1/[4𝜋 max(∥𝒙 −𝒚∥, 𝜀d)], where 𝜀d ≪ 1 is a threshold.

4.3 Convergence Analysis
First, we consider convergence for BIEs of the single-layer potential.
It is convenient to define an operator K that satisfies

K𝜙 (𝒙) = −
∬
𝜕𝛺

2
𝜕𝐺

𝜕𝑛𝑥
(𝒙,𝒚) 𝜙 (𝒚) d𝐴𝑦 , (23)

and then (16) can be reformulated as a Fredholm integral equation
of the second kind:

𝜙 (𝒙) = 𝛼K𝜙 (𝒙) + 2𝛼 𝑓 (𝒙), (24)

where 𝑓 (𝒙) = 𝑯app (𝒙) · 𝒏 is the boundary term. Such an equation
is solved in a standard way by a Neumann series as follows:

𝜙 (𝒙) = (I − 𝛼K)−12𝛼 𝑓 (𝒙)

=

(
I + 𝛼K + 𝛼2K2 + 𝛼3K3 + · · ·

)
2𝛼 𝑓 (𝒙), (25)

in which I denotes the identity operator. Given that the character-
istic values of 𝛼K , denoted 𝜆1, 𝜆2, . . . (|𝜆1 | ≤ |𝜆2 | ≤ . . .), are such
values of 𝜆 that the equation

(I − 𝛼𝜆K)𝜙 (𝒙) = 0 (26)

has non-zero solutions, the above series converges if and only if
|𝜆1 | > 1. According to the property that 𝜆 = −1 is the non-zero
solution with the least modules for (I − 𝜆K)𝜙 = 0 [Sabelfeld and
Simonov 2016, pp. 14, 37, 44], it is easy to prove 𝜆1 = −1/𝛼 . Thus
we conclude that a sufficient condition for the convergence of (25)
is |𝛼 | < 1, which holds true as long as 𝜒 is positive.

Now we proceed to investigate the convergence of the numerical
scheme proposed in §4.2. It is evident that (21) converges to (16) as
the point cloud tends to infinitely dense. In fact, the points with
attributes can be regarded as constant elements in the BEM [Sauter
and Schwab 2011]. Therefore, the preceding analysis applies equally
to the numerical scheme as well: one can naturally replace K with
a discretized version and establish connections between the fixed-
point iterations and the Neumann series. Generally speaking, the
convergence rate of Alg. 1 linearly depends on the spectral radius
1/|𝜆1 | = 𝛼 = 𝜒/(𝜒 + 2) (𝜒 > 0).

Intuitive explanation. Here we provide an intuitive explanation
of the IoB solver. As noted by Pharr et al. [2023], when solving
the rendering equation with ray tracing, each additional bounce of
the ray corresponds to the inclusion of a higher-order term in the
Neumann series, where the original illuminated surfaces are treated
as virtual light sources. Similarly, during every iteration of the IoB
solver, the original solution of 𝑯ind (derived from 𝜙) can be regarded
as a virtual applied magnetic field. The material is magnetized by
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Fig. 5. In the presence of a uniform magnetic field, a ferrofluid within the
tank undergoes a gradual transformation, developing distinctive spikes that
align precisely along the direction of the magnetic field.

this field to a higher-order term and subsequently induces a higher-
order magnetic field that in turn contributes to the solution. This
magnetization-and-induction process continues to occur within an
infinitesimally small time interval and finally reaches equilibrium,
which is numerically emulated by the solver.

Acceleration. Furthermore, we point out that it is possible to ac-
celerate the convergence of iterations by rewriting (25) as

𝜙 (𝒙) = 1
1 + 𝛼 𝜙 (𝒙) +

𝛼

1 + 𝛼 𝜙 (𝒙)

=
1

1 + 𝛼

(
I + 𝛼 (I + K) + 𝛼2 (K + K2) + · · ·

)
2𝛼 𝑓 (𝒙)

=

(
I

1 + 𝛼 + lim
𝑚→∞

𝑚∑︁
𝑘=1

𝛼 (I + K)
1 + 𝛼 (𝛼K)𝑘−1

)
2𝑎𝑓 (𝒙). (27)

This reformulation eliminates 𝜆1 = −1/𝛼 from the characteristic
values of the summands, such that the new series converges at the
rate of 1/|𝜆2 | ∝ 𝛼 , which is consistently faster than the original
version since |𝜆2 | ≠ |𝜆1 | [Sabelfeld and Simonov 2016, pp. 37, 44].
For iterative solutions that truncate the series of (27) at some finite
𝑚 as follows:

𝜙 (𝒙) =
(
I

1 + 𝛼 +
𝑚∑︁
𝑘=1

𝛼 (I + K)
1 + 𝛼 (𝛼K)𝑘−1

)
2𝛼 𝑓 (𝒙)

=

𝑚−1∑︁
𝑘=0
(𝛼K)𝑘2𝛼 𝑓 (𝒙) + (𝛼K)𝑚 2𝛼

1 + 𝛼 𝑓 (𝒙), (28)

it is clear that the only modification is the inclusion of the factor
1/(1 + 𝛼) in the term with the highest order. This is reflected in the
selection of the initial guess for our IoB solver (Alg. 1). A similar
strategy has been adopted in solving Dirichlet problems by a Walk-
on-Boundary method [Sugimoto et al. 2023].

4.4 Complexity Comparisons
The IoB approach has an outstanding advantage in that its equa-
tions are aligned with the assignments of an FMM [Beatson and
Greengard 1997]: both (21) and (22) can be seen as N-body problems,
with the kernels depending solely on the positions of the source
points. Accelerated by the FMM, the time complexity of Alg. 1 is
O(𝑁 log 𝜀 log 𝜀′), where 𝜀 and 𝜀′ represent the numerical tolerances
for fixed-point iterations and multipole expansions, respectively.

A.Thickness = 2.4mm; B.Thickness = 3.6mm; C. Thickness = 5.0mm.

Fig. 6. A circular thin layer of ferrofluid is confined within a 5.0mm gap
formed by two glass plates. Under a uniform magnetic field perpendicular
to the glass, the ferrofluid stretches and forms complex labyrinth structures.
Growth pattern changes depending on its initial thickness.

Since only a tree structure needs to be constructed, the space com-
plexity is also limited to O(𝑁 ).

Compared to the existing methods, the time and space complex-
ities of our approach are both the lowest, which is illustrated in
Table 1. Here, we assume log 𝜀′ is a constant and let 𝐾 = log 𝜀−1
be the number of iterations. For the purpose of fair comparisons,
the following quantities are considered to be of the same order of
magnitude: 3

√︁
𝑁p,
√
𝑁 , and 𝑛, where 𝑁p is the number of particles

used in SPH methods and 𝑛 is the grid resolution of an Eulerian
approach. Note that the iteration numbers are roughly the same
(∼ 10) according to reported experiments.

5 COUPLING WITH FLUID SIMULATION
The IoB magnetostatic solver introduced in §4 is agnostic to the
underlying fluid simulation framework. In this section, we use a
conventional grid-based fluid simulation as a representative example
to showcase the straightforward integration of our IoB solver into
an existing simulation pipeline.

5.1 The Coupling Method
Grid-based fluid simulation employs the level-set method for sur-
face tracking. Specifically, a signed distance field (SDF) 𝜑 (𝒙) is
defined as the level-set function and updated through advection and
reinitialization at each time step. For any point on the surface, the
outward-pointing normal and the mean curvature are calculated by
𝒏 = ∇𝜑/∥∇𝜑 ∥ and 𝜅 = ∇ · 𝒏, respectively.

First, it is a logical step to discretize (9) by the ghost fluid method,
because as the only new introduced term, the magnetic pressure 𝑝m
serves a similar role to the capillary pressure 𝑝c in the boundary
condition. Suppose that the grid cell (𝑖, 𝑗, 𝑘) is in the ferrofluid (i.e.,
𝜑𝑖, 𝑗,𝑘 ≤ 0) and an adjacent cell, e.g., (𝑖 + 1, 𝑗, 𝑘), is in the air (i.e.,
𝜑𝑖+1, 𝑗,𝑘 > 0), as proposed by Kang et al. [2002; 2000], the location
of the interface is at (𝑖 + 𝜃, 𝑗, 𝑘) where

𝜃 =
𝜑𝑖, 𝑗,𝑘

𝜑𝑖, 𝑗,𝑘 − 𝜑𝑖+1, 𝑗,𝑘
. (29)

Subsequently, with 𝜅 and 𝑯 evaluated at (𝑖 + 𝜃, 𝑗, 𝑘), the boundary
condition for fluid pressure is discretized as

𝑝𝑖+1, 𝑗,𝑘 =
2𝛾𝜅 − 1

2 𝜇0𝜒 ∥𝑯 ∥
2 − 1

2 𝜇0 (𝜒𝑯 · 𝒏)
2 − (1 − 𝜃 )𝑝𝑖, 𝑗,𝑘

𝜃
, (30)
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Fig. 7. A thin layer of ferrofluid with a circular cavity is confined between
two glass panes. Driven by a uniform magnetic field perpendicular to the
panes, it extends tentacles converge at the center. Subsequently, these
intricate patterns diffuse like ink spreading through water.

of which the left-hand side is a ghost pressure.
Second, the marching cubes algorithm [Lorensen and Cline 1987],

commonly used as a preprocessing step for rendering in a conven-
tional pipeline, can be used to generate the input point cloud of
Alg. 1. The triangular mesh extracted from the level-set function
𝜑 using the marching cubes algorithm possesses several essential
properties for our purposes:
• It is fine-grained that the distance between neighbouring
vertices is less than

√
3Δ𝑥 , where Δ𝑥 is the grid spacing.

• Its vertex positions align precisely with all the interface points
required for evaluation in the ghost fluid method.
• Local vertex areas can be readily determined based on its
topological characteristics.

Therefore, in practical implementation, we employ all the vertices
from the marching-cubes mesh as the input point cloud of Alg. 1. For
each point within this cloud, its position corresponds to the vertex
position, and the control area is estimated as one-third of the total
area of all adjacent faces connected to the vertex. Simultaneously,
we compute the point’s normal vector by applying finite difference
to the level-set function 𝜑 , thereby achieving smoother results.

5.2 The Full Pipeline
For the sake of reproducibility, we present the pipeline of grid-based
ferrofluid simulation during each time step as follows:
(1) Determine the time-step size Δ𝑡 as 𝑐Δ𝑥/𝑢max, where 𝑐 is the

CFL number and 𝑢max is the maximum velocity;
(2) Advect 𝜑 and 𝒖 by 𝜑 ← 𝜑 −Δ𝑡 (𝒖 ·∇𝜑) and 𝒖 ← 𝒖 −Δ𝑡 (𝒖 ·∇𝒖)

using a semi-Lagrangian method [Staniforth and Côté 1991];
(3) Reinitialize 𝜑 by solving 𝜕𝜑/𝜕𝜏 + sgn(𝜑) ( |∇𝜑 | − 1) = 0 with HJ

WENO discretization [Jiang and Peng 2000];
(4) Extract a triangular meshM from 𝜑 by marching cubes;
(5) Generate the input point cloud of the IoB solver based onM

and then perform Alg. 1 to calculate point-based values of 𝑯 ;
(6) Apply gravity by 𝒖 ← 𝒖 + Δ𝑡𝒈;

(a) Ground truth; (b) Grid-based
(AEmax ≈ 0.1222);

(c) IoB (FMM)
(AEmax ≈ 0.0014).

Fig. 8. Comparisons of different solvers with respect to accuracy inmodeling
magnetic potential generated by amagnetized circle within a square domain.
Higher potential is mapped to warmer color in the visualization, and the
maximum absolute error of each solver is reported in the captions.

(7) Solving Poisson’s equation
∇ ·

(
𝒖 − Δ𝑡

𝜌
∇𝑝

)
= 𝛽 , 𝒙 ∈ 𝛺 , (31a)

𝑝 = 𝑝air + 𝑝c − 𝑝m, 𝒙 ∈ 𝜕𝛺 ∩ 𝜕𝛺a, (31b)
Δ𝑡

𝜌
(𝒏 · ∇𝑝) = 𝒏 · (𝒖 − 𝒖solid), 𝒙 ∈ 𝜕𝛺 ∩ 𝜕𝛺s, (31c)

for 𝑝 , where 𝛽 is determined by volume control [Kim et al. 2007],
(31b) is discretized using the ghost fluid method, and (31c) is
discretized with the method of Batty et al. [2007];

(8) Project 𝒖 by 𝒖 ← 𝒖 − Δ𝑡∇𝑝/𝜌 ;
(9) Damp 𝒖 by 𝒖 ← e−𝜂Δ𝑡𝒖, where 𝜂 is the damping coefficient;
(10) Extrapolate 𝒖 into the air and solid regions;
(11) ExportM for rendering if necessary.
It is worth emphasizing that we have expanded the grid-based fluid
simulation pipeline by introducing just one additional step (Step
(5)), and made slight modification of the free-surface boundary
condition (31b). Given that fluid simulation is not our primary focus,
we employ an artificial viscosity approach by damping the velocity
(Step (9)) as a temporary solution. This can certainly be substituted
with a physically accurate viscosity solver [Batty and Bridson 2008].

The current implementation is based on an underlying marker-
and-cell (MAC) grid [Harlow and Welch 1965]. For details of meth-
ods used in the above steps, please refer to the books of Bridson
[2015] or Osher and Fedkiw [2005].

6 EXPERIMENTAL RESULTS
We have validated the IoB magnetostatic solver via a parallel CPU
implementation, with the assistance of the FMMTL library [Cecka
and Layton 2015] to accelerate summations in Alg. 1. With a minor
modification to substitute𝐺 with �̃� (see §4.2), we directly use the
LaplaceSpherical kernel built in FMMTL for this task. The order
of the multipole expansion is set to 6. In this section, we begin by
showcasing benchmark tests of the solver for magnetostatic fields
computations, followed by experiments where it is integrated into
the grid-based fluid solver to simulate ferrofluids.

6.1 Solving Magnetostatic Fields
In comparison experiments, we include the existing solvers that
adopt the interfacial force model, i.e., the grid-based [Ni et al. 2020]
and surface-only [Huang and Michels 2020] approaches, alongside
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(a) Ground truth; (b) Grid-based
(REmax ≈ 8.39%);

(c) Surface-only
(REmax ≈ 1.80%);

(d) IoB (FMM)
(REmax ≈ 2.44%).

Fig. 9. Comparison of different solvers with respect to accuracy of the
magnetic pressure on a sphere surface. Higher pressure is mapped to warmer
color in the visualization, and the maximum relative error of each solver is
reported in the captions.

the IoB solver. For the sake of fairness, all comparisons are per-
formed on the same grid for each solver. The background grid serves
the purpose of discretizing the equations and approximating the
boundary condition at infinity through magnetic shielding for the
grid-based solver. It also provides the input surface mesh or point
cloud for the other two solvers through marching cubes.

The timings here are measured on an AMD EPYC 9654 processor
without GPU acceleration (for the IoB and grid-based solvers) and
an AMD Ryzen 9 7950X processor with an Nvidia Geforce RTX 4090
graphics card (for the surface-only solver).

Accuracy (2D). A magnetic circle with a radius of 1m and a sus-
ceptibility of 1 is centered at the origin. When an external field
𝑯app = (0, 1Am−1) is applied, the magnetic scalar potential of the
induced field can be analytically determined by

𝜓 (𝒙) =


𝑦

3
Am−1, ∥𝒙 ∥ ≤ 1m, (32a)
𝑦

3(𝑥2 + 𝑦2)
Am, ∥𝒙 ∥ > 1m. (32b)

Given a grid with a resolution of 10242, and coordinates confined
to the range of [−2m, 2m], we employ both the grid-based and IoB
approaches to compute𝜓 and compare the solutions with the ground
truth within the domain occupied by the grid. Fig. 8 visualizes results
of the accuracy test, with the potential of each solver aligned at
the center. Compared to the grid-based approach, the maximum
absolute error of the IoB solver measured at grid points is two orders
of magnitude smaller, attributed to the correct application of the
boundary conditions.

Accuracy (3D). Similar to the 2D case, a magnetic sphere (𝑟 = 1m,
𝜒 = 1) is centered at the origin. Under the action of an external field
𝑯app = (0, 1Am−1, 0), the total magnetic field within the sphere
is 𝑯 = (0, 0.75Am−1, 0), such that the magnetic pressure has an
accurate solution

𝑝m =
9𝜇0
32

(
1 + 𝑦2

∥𝒙 ∥2

)
A2m−2, ∥𝒙 ∥ = 1m. (33)

We employ the grid-based, surface-only, and IoB solvers to com-
pute 𝑝m upon a grid with a resolution of 1283, whose occupied
domain is −2m ≤ 𝑥,𝑦, 𝑧 ≤ 2m. As illustrated in Fig. 9, the mag-
netic pressure calculated by the grid-based solver obviously differs
from the ground truth especially around the poles of the sphere,
due to its compromise on physical accuracy. The surface-only and
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Grid-based [Ni et al. 2020]
Surface-only [Huang et al. 2020]
Induce-on-Boundary (direct)
Induce-on-Boundary (FMM)

Fig. 10. Comparison of different solvers in terms of computation time on
Eulerian grids with various resolutions. The timing measurement starts
when a solver achieves a relative residual reduction below 10−6. Note that
the surface-only solver is implemented with GPU acceleration.

IoB solvers produce similar results, although the former exhibits a
smaller maximum relative error compared to the latter, thanks to
the sophisticated Galerkin BEM.

Performance. To assess the performance of different solvers, we
expand the 3D accuracy test scenario to grids with a range of resolu-
tions, spanning from 323 to 5123. During the experiment, we record
the time required for each solve to reduce the relative residual to less
than 10−6. As illustrated in Fig. 10, the grid-based solver generally
takes the longest solving time for the magnetic field. The surface-
only solver is limited to handling resolutions no greater than 1363
due to memory constraints arising from the assembly of dense matri-
ces, whereas the IoB solver demonstrates the exceptional scalability
thanks to its lower complexities. Note that there is a large constant
factor in the time complexity of the FMM-accelerated IoB solver. A
direct summation version can be a better choice with resolutions
lower than 1003 (𝑁 ≈ 12 k).

Convergence. In Fig. 11, we present experimental results to vali-
date the convergence of the IoB solver. The test scenario involves a
complex mesh with nearly 105 vertices, as depicted in Fig. 11a. It is
clear to see from Fig. 11b that the convergence rate approximately
follows a linear pattern with respect to 𝛼 = 𝜒/(𝜒 + 2), as proved in
§4.3, and the IoB solver only takes about ten iterations to reduce the
residual to a fairly low magnitude, when the susceptibility remains
in a moderate range (𝜒 < 5). Furthermore, we examine the con-
vergence of IoB solver with and without the acceleration strategy
described in §4.3. As demonstrated in Fig. 11c, the plain scheme,
which excludes the factor 1/(1 + 𝛼) from the initial guess in Alg. 1,
displays less favorable convergence behavior compared to the ac-
celerated scheme, especially when dealing with high susceptibility
values (e.g., 𝜒 = 1000).

Ablation study. Moreover, we conduct ablation experiments com-
paring the IoB solver with conventional solvers for solving the
system of linear equations (21). Since the system is neither symmet-
ric nor positive definite, we select the biconjugate gradient stabilized
(BiCGSTAB) and generalized minimal residual (GMRES) methods
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(a) The test mesh (73 868 vertices);
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(b) Residual plots with different susceptibilities;

5 10 15 20
Iteration

10−3

10−2

10−1

100

R
es

id
ua

l

χ= 10 (plain)
χ= 10 (accelerated)
χ= 1000 (plain)
χ= 1000 (accelerated)

(c) Residual plots with and without acceleration.

Fig. 11. Convergence validation of the IoB solver, upon a complex mesh presenting the normal-field instability of ferrofluids (Fig. 11a). The experimental
results verify the conclusions derived in §4.3: the convergence rate of the IoB solver linearly depends on 𝛼 (Fig. 11b), and the convergence can be accelerated
by the inclusion of the factor 1/(1 + 𝛼 ) in the initial guess (Fig. 11c).

as the conventional counterparts, where diagonal and smoothed
aggregation multigrid preconditioners are utilized. To ensure a fair
comparison, no FMM acceleration is employed for any approach.
Based on the results shown in Figs. 12 and 13, we conclude that the
IoB solver delivers superior performance across various levels of
discretization as long as 𝜒 is less than 50, which aligns well with
the requirements for simulating large-scale ferrofluids.

6.2 Simulating Ferrofluids
By integrating the IoB solver into a grid-based fluid simulation
pipeline, we can easily create vivid animations of ferrofluids. During
our implementation, we utilize the AMGCL library [Demidov 2019]
to solve Poisson’s equation for the pressure. The specifications and
statistics of the simulations are reported in Table 3.

6.2.1 Normal-field instability. The normal-field instability in fer-
rofluids arises due to the interplay of magnetic, gravitational, and
capillary forces, leading to the formation of regular patterns or
spikes aligned parallel to the magnetic field direction.

Uniform field. A ferrofluid is initially stable inside a tank. Upon
the application of a uniform magnetic field, the ferrofluid is mag-
netized and induces an internal field that triggers the formation of
spikes parallel to the magnetic field (Fig. 5).

Dipole source. A blob of ferrofluid is placed on the tabletop, with
a magnet approximated as a dipole located beneath it. After mag-
netization, the ferrofluid clusters and shaped into (more than one
hundred) radial spikes (Fig. 2).

Magnetized ball. A highly magnetized iron ball (with a suscep-
tibility of 5000) is positioned in the center of a ferrofluid. The ball
behaves as a magnet, attracting the ferrofluid and causing it to form
spike structures around the sphere (Fig. 3).

Lifting ferrofluid. This experiment is divided into four phases.
Initially, a ferrofluid is magnetized by a magnet below, shaped into
spikes on the ground. Second, another magnet is placed above. A
portion of the fluid is lifted and forms spike structures on the ceiling.

Later, the magnet underneath is removed, so that all the fluid is
attracted to the above one. In the end, the top magnet is also moved
away, and thus the ferrofluid falls back (Fig. 1).

6.2.2 Labyrinthine instability. When magnetic fields are applied
perpendicular to trapped thin layers of ferrofluids, fascinating pat-
terns emerge, resemblingmaze or labyrinthine structures, with walls
and pathways formed by the ferrofluid.

Patterns in relief. A thin layer of circular ferrofluid is sandwiched
between two glass panes, and a uniform field is applied perpendicu-
lar to the panes. By adjusting the initial thickness of ferrofluids, our
simulations produce various maze-like relief patterns (Fig. 6).

Patterns in intaglio. A thin layer of ferrofluid with a circular cavity
in the middle is sandwiched between two glass panes. A uniform
field is applied perpendicular to the panes, giving rise to maze-like
patterns in intaglio (Fig. 7).

6.2.3 Extension to solids. The IoB solver is agnostic to the underly-
ing numerical simulation framework, making it highly adaptable
to various simulation systems. By implementing the solver as a
plugin of Bullet Physics SDK [Coumans 2015], an animation where
a magnet attracts 243 iron balls is obtained (Fig. 4). In spite of the
relatively high susceptibility (𝜒 = 50), the IoB solver still shows
excellent convergence, whose residual generally decreases from 104
to 10−2, 10−3, and 10−5 after 10, 15, and 20 iterations, respectively.

7 CONCLUSION AND DISCUSSION
We have introduced IoB, an innovative magnetostatic solver based
on the single-layer potential, which can be readily adapted to sim-
ulating ferrofluids on Eulerian grids. At the heart of our solver,
highly efficient fixed-point iterations are utilized to address the
magnetostatic governing equations. We have not only conducted a
theoretical analysis of the algorithm’s convergence but also carried
out extensive experiments to showcase the IoB solver’s lightweight,
fast, and accurate characteristics. It emerges as a valuable tool for de-
termining the magnetic pressure of ferrofluids and can be seamlessly
integrated into grid-based fluid simulation pipelines.
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Fig. 12. Comparison of different solvers in terms of computation time in
the scenario of a magnetic sphere with 𝜒 = 1 (see Fig. 9). The experiments
are conducted on grids with resolutions ranging from 323 to 1923, and the
number of points is reported in the figure. For each experiment, the time
cost is measured once the relative residual is reduced to less than 10−6.

Relation with CG methods. The underpinning equation of the IoB
solver is a Fredholm integral equation of the second kind, bearing
resemblance to the rendering equation [Pharr et al. 2023], as well as
those in WoS [Qi et al. 2022] and WoB [Sugimoto et al. 2023]. As a
point-based deterministic approach, the IoB solver can conceptually
relate to rendering techniques such as radiosity [Cohen et al. 1993]
and PBGI [Christensen 2008]. Moreover, the solver’s computational
paradigm, which traces from source points rather than field points,
also aligns with the principles of adjoint estimators found in both
rendering [Christensen 2003] and WoB [Sabelfeld and Simonov
1994]. Such similarities inspire us to design the presented IoB solver
and also broaden our horizons to develop further improvements.

Choice of the single-layer potential. As pointed out by Huang and
Michels [2020], the double-layer potential gives a more accurate
solution than the single-layer one when calculating magnetic fields
by a Galerkin BEM. However, there are some shortcomings of the
double-layer potential that restrict us to invent a lightweight solver
like IoB. First, the scalar potential of the applied field must be pro-
vided to calculate the potential density, while the single-layer one
only requires the field itself. Second, the kernel of the double-layer
BIEs depends on the field points rather than the source point (see
§B.2), which makes it indirect to accelerate summations by FMM.

Limitations and future work. Our current simulation results ex-
hibit minor jittering artifacts. Our observations suggest that, beyond
the inherent shortcomings of the single-layer potential and point-
based discretization, the explicit surface tension scheme and the
volume loss issue associated with the level-set method significantly
contribute to these artifacts. To mitigate these effects, potential so-
lutions include (a) adopting implicit methods for surface tension,
(b) utilizing more effective volume control techniques, and (c) de-
veloping an accurate and robust viscosity solver to stabilize surface
movements properly. In this paper, we have exclusively validated
the effectiveness of the IoB solver within a fully Eulerian framework,
where the level-set method is employed to track the fluid surface.We
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Fig. 13. Comparisons betweenGMRES (diagonal) and IoB (direct) in terms of
both time cost and iteration number required to reduce the relative residual
below 10−6. The experiments are conducted upon a complex mesh (Fig. 11a)
with various susceptibilities. Note that themultigrid-preconditionedGMRES
is not compared here due to the impracticality to allocate memory for
multigrid structures of such high-dimensional (∼ 105) dense systems.

are greatly interested in incorporating the solver into hybrid frame-
works, e.g., PIC/FLIP, where the fluid surface is reconstructed based
on advected particles [Yu and Turk 2013]. There is also potential for
improving the accuracy and performance of the proposed coupling
method (§5.1), for instance, by optimizing the marching-cubes mesh
or exploiting temporal coherence. Furthermore, as demonstrated in
§6.2, leveraging IoB solver for simulating magnetic solids presents
another promising avenue. The point-based nature of the solver
opens up the possibility of devising an implicit numerical scheme
for magnetic forces, which can be seamlessly integrated with IPC
[Li et al. 2020] and implicit elasticity [Sifakis and Barbic 2012].
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A MAGNETOSTATICS
Generally speaking, the evolution of the magnetic field is governed
by Maxwell’s equations as follows:


∇ · 𝑩 = 0, (34)

∇ × 𝑯 = 𝒋f +
𝜕𝑫

𝜕𝑡
, (35)
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where 𝑩(𝒙) is the magnetic induction, 𝑯 (𝒙) is the magnetic field,
𝒋f (𝒙) is the electric current density of free charges, and𝑫 (𝒙, 𝑡) is the
electric displacement. Given the ferrofluid volume 𝛺 and its surface
𝜕𝛺 , the zero-current assumption of non-conductive ferrofluids states
that 𝒋f = 0 (𝒙 ∈ 𝛺 ∩ 𝜕𝛺) and 𝜕𝑫/𝜕𝑡 = 0 (∀𝒙). That is why we use
the term magnetostatics instead of magnetics.

Considering that the 𝑩-field is determined by the 𝑯 -field and the
magnetization 𝑴 (𝒙) as 𝑩 = 𝜇0 (𝑯 + 𝑴), where 𝜇0 is the vacuum
permeability, it is natural to expand (34–35) as{

∇ · 𝜇0 (𝑯app + 𝑯ind +𝑴) = 0, (36)
∇ × (𝑯app + 𝑯ind) = 𝒋f , (37)

in which the total magnetic field 𝑯 has been written as 𝑯app +
𝑯ind. Note that the applied magnetic field 𝑯app alone should hold
Maxwell’s equations as well in the concerned domain1:{

∇ · 𝜇0𝑯app = 0, (38)
∇ × 𝑯app = 𝒋f , (39)

and therefore we can obtain governing equations of 𝑯ind by sub-
tracting (38–39) from (36–37):{

∇ · 𝜇0 (𝑯ind +𝑴) = 0, (40)
∇ × 𝑯ind = 0. (41)

As described in §3.1, we define 𝑯ind = −∇𝜓 , where 𝜓 (𝒙) is a
continuous scalar potential, to replace (41), such that Gauss’s law
for magnetism (40) can be reformulated as

∇
2𝜓 = ∇ ·𝑴 . (42)

Since the magnetization 𝑴 (𝒙) is determined by

𝑴 =

{
𝜒𝑯 , 𝒙 ∈ 𝛺 , (43a)
0, 𝒙 ∉ 𝛺 ∪ 𝜕𝛺 , (43b)

we can further analyze (42) at different locations:
• 𝒙 ∉ 𝛺 ∪ 𝜕𝛺 . It is clear to show ∇2𝜓 = 0 because of 𝑴 = 0.
• 𝒙 ∈ 𝛺 . The right-hand side of (42) is calculated by

∇ ·𝑴 = 𝜒 (∇ · 𝑯app − ∇2𝜓 ) = −𝜒∇2𝜓 , (44)

such that ∇2𝜓 = −𝜒∇2𝜓 holds true, which means ∇2𝜓 = 0.
• 𝒙 ∈ 𝜕𝛺 . It is not hard to prove

𝜕𝜓

𝜕𝑛

����
+
− 𝜕𝜓

𝜕𝑛

����
−
= (𝑴+ −𝑴−) · 𝒏 = −𝑴− · 𝒏 (45)

by applying Gauss’s theorem on both sides of (42). Given that
𝑴− · 𝒏 can be reformulated by

𝑴− · 𝒏 = 𝜒𝑯− · 𝒏 = 𝜒𝑯app · 𝒏 − 𝜒
𝜕𝜓

𝜕𝑛

����
−
, (46)

(45) is equivalent to the following formulation:
𝜕𝜓

𝜕𝑛

����
+
+ 𝜒𝑯app · 𝒏 = (1 + 𝜒) 𝜕𝜓

𝜕𝑛

����
−
. (47)

Thus we can conclude that the potential 𝜓 is the solution to
Laplace’s equation ∇2𝜓 = 0 (𝒙 ∉ 𝜕𝛺), subject to the boundary con-
ditions (47) (𝒙 ∈ 𝜕𝛺) and lim∥𝒙 ∥→∞𝜓 (𝒙) = 0. The latter condition
is conventional for potentials in an infinite domain.
1The free current density is only associated with external magnetic sources, according
to the zero-current assumption of ferrofluids.

B THE POTENTIAL THEORY

B.1 The Single-Layer Potential
In addition to §4.1, here we show a concrete definition of the single-
layer potential.

Different from that in §A, for 𝒙 ∈ 𝜕𝛺 , we apply Gauss’s theorem
only on the right-hand side of (42) and acquire

∇
2𝜓 = −(𝑴− · 𝒏)𝛿𝜕𝛺 , ∀𝒙 , (48)

where 𝛿𝜕𝛺 (𝒙) is the generalized Dirac delta function on 𝜕𝛺 , which
is a Poisson’s equation, instead of Laplace’s equation mentioned
above. Considering that the solution to{

∇
2
𝑥𝐺 (𝒙,𝒚) = −𝛿 (∥𝒙 −𝒚∥), ∀𝒙 , (49)

𝐺 (𝒙,𝒚) → 0, ∥𝒙 ∥ → ∞ (50)

is 𝐺 (𝒙,𝒚) = 1/(4𝜋 ∥𝒙 −𝒚∥), it is natural to define

𝜙 (𝒙) = 𝑴− · 𝒏, 𝒙 ∈ 𝜕𝛺 , (51)

such that the solution to (48) can be formulated as

𝜓 (𝒙) =
∬
𝜕𝛺

𝐺 (𝒙,𝒚) 𝜙 (𝒚) d𝐴𝑦 , ∀𝒙 , (52)

which is termed the single-layer potential.
Considering that the normal derivative of 𝜓 is discontinuous

across the interface:
𝜕𝜓

𝜕𝑛

����
+
− 𝜕𝜓

𝜕𝑛

����
−
= −𝜙 (𝒙), 𝒙 ∈ 𝜕𝛺 , (53)

by taking the normal derivative of (52), the symmetry of deciding
the inner and outer sides results in

𝜕𝜓

𝜕𝑛

����
+
+ 𝜕𝜓

𝜕𝑛

����
−
= 2

∬
𝜕𝛺

𝜕𝐺

𝜕𝑛𝑥
(𝒙,𝒚) 𝜙 (𝒚) d𝐴𝑦 , 𝒙 ∈ 𝜕𝛺 , (54)

and thus we can obtain[
𝜕𝜓

𝜕𝑛
(𝒙)

]
±
=

∬
𝜕𝛺

𝜕𝐺

𝜕𝑛𝑥
(𝒙,𝒚) 𝜙 (𝒚) d𝐴𝑦 ∓

1
2
𝜙 (𝒙), 𝒙 ∈ 𝜕𝛺 , (55)

by combining (53) and (54). Substituting (47) (or (51)) into (55), it is
easy to prove

𝜙 (𝒙)
2𝛼

= −
∬
𝜕𝛺

𝜕𝐺

𝜕𝑛𝑥
(𝒙,𝒚) 𝜙 (𝒚) d𝐴𝑦 + 𝑯app (𝒙) · 𝒏, 𝒙 ∈ 𝜕𝛺 , (56)

where 𝛼 = 𝜒/(2 + 𝜒) is the reduced permeability.

B.2 The Double-Layer Potential
Besides the single-layer one, there is another potential named the
double-layer potential for magnetostatics, which is adopted in the
previous work of Huang and Michels [2020].

Suppose that the magnetic scalar potential of the applied field is
known, denoted𝜓app (𝒙) (𝑯app = −∇𝜓app), a double-layer potential
𝜓∗ (𝒙) is defined as

𝜓∗ =
{ (1 + 𝜒)𝜇0𝜓 + 𝜒𝜇0𝜓app, 𝒙 ∈ 𝛺 , (57a)
𝜇0𝜓 , 𝒙 ∉ 𝛺 ∪ 𝜕𝛺 . (57b)

Considering that −∇𝜓∗ = 𝜇0 (𝑯ind +𝑴) both inside and outside the
magnetic material, we use 𝑩ind to denote −∇𝜓∗ because it has the
same physical dimension as 𝑩. Moreover, derived from Gauss’s law
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for magnetism, 𝑩ind, as well as 𝑩, is continuous along the normal
direction across 𝜕𝛺 , which means

𝜕𝜓∗

𝜕𝑛

����
+
=
𝜕𝜓∗

𝜕𝑛

����
−
, 𝒙 ∈ 𝛺 . (58)

Since 𝜓∗ is a potential without jumps of the normal derivative
across the interface, we can define a density 𝜙∗ attached on the
boundary [Sugimoto et al. 2023] such that

𝜓∗ (𝒙) =
∬
𝜕𝛺

𝜕𝐺

𝜕𝑛𝑦
(𝒙,𝒚) 𝜙∗ (𝒚) d𝐴𝑦 , 𝒙 ∉ 𝜕𝛺 . (59)

By taking the limit, the above boundary integral equations suggests
that the double-layer potential itself is not continuous:

𝜓∗± (𝒙) =
∬
𝜕𝛺

𝜕𝐺

𝜕𝑛𝑦
(𝒙,𝒚) 𝜙∗ (𝒚) d𝐴𝑦 ±

1
2
𝜙∗ (𝒙), 𝒙 ∈ 𝛺 . (60)

Substituting (57) into (60), the density 𝜙∗ is given by

𝜙∗ = −𝜒𝜇0 (𝜓 +𝜓app), 𝒙 ∈ 𝛺 , (61)

and another equation is obtained as follows:
𝜙∗ (𝒙)
2𝛼

= −
∬
𝜕𝛺

𝜕𝐺

𝜕𝑛𝑦
(𝒙,𝒚) 𝜙∗ (𝒚) d𝐴𝑦 − 𝜇0𝜓app. (62)

Note that (62), similar to (56), can be utilized to determine 𝜙∗ on the
boundary.
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