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Abstract— Target tracking has numerous significant civilian
and military applications, and maintaining the visibility of the
target plays a vital role in ensuring the success of the tracking
task. Existing visibility-aware planners primarily focus on
keeping the target within the limited field of view of an onboard
sensor and avoiding obstacle occlusion. However, the negative
impact of system uncertainty is often neglected, rendering the
planners delicate to uncertainties in practice. To bridge the gap,
this work proposes a real-time, non-myopic trajectory planner
for visibility-aware and safe target tracking in the presence of
system uncertainty. For more accurate target motion prediction,
we introduce the concept of belief-space probability of detection
(BPOD) to measure the predictive visibility of the target under
stochastic robot and target states. An Extended Kalman Filter
variant incorporating BPOD is developed to predict target belief
state under uncertain visibility within the planning horizon. To
reach real-time trajectory planning, we propose a computa-
tionally efficient algorithm to uniformly calculate both BPOD
and the chance-constrained collision risk by utilizing linearized
signed distance function (SDF), and then design a two-stage
strategy for lightweight calculation of SDF in sequential convex
programming. Extensive simulation results with benchmark
comparisons show the capacity of the proposed approach to
robustly maintain the visibility of the target under high system
uncertainty. The practicality of the proposed trajectory planner
is validated by real-world experiments.

I. INTRODUCTION

Target tracking using an autonomous vehicle has garnered
widespread utilization in various important applications, such
as vehicle tracking [1], cinematography [2], and underwater
monitoring [3]. In recent years, visibility-aware motion plan-
ning has emerged as a key focus of target-tracking research,
where the robot is tasked with generating trajectories to
track a mobile target while ensuring continuous visibility,
as illustrated in Fig. 1.

Since first characterized by LaValle et al. [4], various
motion planning methodologies have been introduced to
tackle the visibility-aware tracking task. Some previous
works formulate the target tracking problem as a visibility-
based pursuer-evader game [5, 6] and focus on proposing
the winning strategy for the pursuers to keep uninterrupted
visibility of a target. Nevertheless, the adversarial behaviors
of the target greatly complicate robot motion planning and
lead to high computational costs [6, 7], thus hindering the
application to real-time non-adversarial tracking tasks in
realistic, complex environments.
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Fig. 1: Illustration of visibility-aware tracking for a moving
target. The red region represents the part of FOV being occluded,
while the light blue region means the unoccluded part. Note that
the occluded regions overlapping with obstacles are not visualized.

Trajectory optimization, on the contrary, remains a main-
stream methodology for real-time visibility-aware planning.
This approach formulates trajectory planning as an optimiza-
tion problem [8], seeking to maintain the target’s visibility by
adjusting robot control inputs [9, 10] or predictive trajectory
parameters [11]. Our work adopts this methodology due to
its scalability and computational efficiency.

Previous works on visibility-aware trajectory planning
mainly focus on incorporating explicit considerations for
the limited field of view (FOV) and obstacle occlusion,
as they will directly impair the visibility of a target. To
avoid potential target loss due to a limited FOV, previous
works employ geometric costs, such as distance [3, 11] and
bearing angle [11, 12] costs between the target and the
sensor, to maintain the target within the FOV. To handle
possible occlusion by obstacles, previous works propose
to apply distance cost between the line of sight (LOS)
and obstacles to avoid occlusion [12, 13]. However, most
of the abovementioned research overlooks the detrimental
effects of system uncertainties arising from imperfect system
models, process noise, and measurement noise, which may
significantly degrade state estimation and trajectory planning
in visibility-aware tracking tasks.

Belief space planning (BSP) [14] provides a systematic
approach for handling system uncertainty, and is widely used
in target tracking tasks with stochasticity [9, 10]. Specifically,
BSP formulates a stochastic optimization problem to gener-
ate visibility maintenance trajectories, and the key step lies
in the evaluation of predictive target visibility. A commonly
employed method for predicting visibility is to evaluate



the probability of detection (POD) by integrating predictive
target probability density function (PDF) over the anticipated
unoccluded FOV area [15, 16]. However, calculating this
integration can be either computationally burdensome when
conducted over continuous state spaces [16] or inaccurate
due to discretization error when transformed into the sum
of probability mass over a grid detectable region [15].
Another method is directly determining target visibility based
on the mean positions of the predicted target and the
planned FOV [9, 10]. Despite its computational efficiency,
such maximum-a-posteriori (MAP) estimation only consid-
ers mean positions, neglecting predictive target uncertainty
during robot trajectory planning.

This work proposes a model predictive control (MPC)-
based non-myopic trajectory planner for mobile target track-
ing in cluttered environments. The proposed framework
systematically considers limited FOV, and obstacle occlusion
under a BSP framework to address state uncertainty. The
main contributions can be summarized as follows:

‚ We propose the concept of belief-space probability of
detection (BPOD) that depends on both robot and target
belief states to function as a measure of predicted
visibility. We then develop an Extended Kalman Fil-
ter (EKF) variant that incorporates BPOD into target
state prediction to take into account stochastic visibility
in the MPC predictive horizon, which overcomes the
deficiency of MAP estimation.

‚ We present a unified representation for both the BPOD
and the collision risk as the probabilities of stochas-
tic SDF satisfaction (PoSSDF) via the use of signed
distance functions (SDFs), and develop a paradigm to
efficiently calculate the PoSSDFs.

‚ We propose a real-time trajectory planner for visibility-
aware target tracking in cluttered environments based
on sequential convex programming (SCP). In particular,
we propose a two-stage strategy for calculating SDF in
SCP to accelerate the planner, reaching a computational
speed of 10Hz. Simulations with benchmark compar-
isons and real-world experiments demonstrate that our
method enables the robot to track a moving target in
cluttered environments at high success rates and visible
rates, even under high system uncertainty.

The remainder of the article is organized as follows. Sec. II
formulates the target tracking problem. Sec. III defines
BPOD and proposes a variant of EKF covariance update
formulation. Sec. IV approximates BPOD and collision risk
by SDF linearization and proposes an SCP framework with a
two-stage strategy for online trajectory planning. Simulations
and real-world experiments are presented in Secs. V and VI,
respectively. Sec. VII presents conclusions and future works.

II. FORMULATION OF TARGET TRACKING

This work considers a mobile target tracking problem in
a 2D environment with cluttered obstacles, as shown in
Fig. 1. The robot knows its current state but relies on a
noisy sensor with limited FOV to detect a stochastically
moving target. Therefore, the target state remains partially
observable, necessitating estimation by the robot. Besides,

the motion model of the robot and the target are both
stochastic, adding to the difficulty of target tracking. The goal
of the robot is to plan collision-free trajectories to maintain
continual detection of the target.

A. Motion Models and Obstacle Modeling

The robot and target dynamics are defined as follows [17]:

zrk`1 “ frpzrk,u
r
kq`wr, wr „N p0,Rrq, (1)

ztk`1 “ f tpztk,u
t
kq `wt, wt „N p0,Rtq, (2)

where z and u denote the state and control input, respec-
tively. The superscripts r and t denote robot and target,
respectively, and the subscript k means time step. The motion
function fr and f t will be specified in Sec. V. The process
noise wr and wt follow Gaussian distributions with zero
means and covariance matrix Rr and Rt, respectively.

This work considers a known continuous map with convex
obstacles represented as point sets Oi ĂR2, i“ 1, 2, ¨ ¨ ¨ , No,
where No denotes the number of obstacles. Note that the
proposed approach can also address nonconvex obstacles by
dividing them into multiple convex ones.

B. Sensor Model

The robot’s sensor has a limited FOV Vk ĎR2, which will
be specified in Sec. V. The sensor model described in this
work considers intermittent measurements due to potential
target loss caused by the limited FOV and occlusions, which
is defined as

yk “

#

fspztk, z
r
kq`ws, xt

k PVv
k

∅, xt
k RVv

k

, (3)

where yk PRdm is the measurement, the measurement func-
tion fs will be specified in Sec. V, and xt

k PR2 denotes target
position. The sensor noise ws follows a Gaussian distribution
with a zero mean and covariance matrix Rs. Here Vv

k is a
subset of Vk that is not occluded by any obstacles1.

C. Target State Estimation

The robot needs accurately estimate the target state to
make informed tracking behavior. To account for the system
nonlinearity and possible target loss, we develop a variant of
EKF for target state estimation to take intermittent measure-
ments into account, inspired by [18].

The filtering procedure can be summarized as follows.
Prediction. Predict the prior PDF using target kinematics,

ẑtk|k´1 “ f tpẑtk´1|k´1,u
t
k´1q, (4a)

Pk|k´1 “At
k´1Pk´1|k´1pAt

k´1qT `Rt, (4b)

where ẑtk´1|k´1 and Pk´1|k´1 represent the mean
and covariance of the estimate of ztk´1, and At

k´1 “

∇ztf tpzt,ut
k´1q|zt“ẑt

k´1|k´1
is the Jacobi matrix of the target

kinematic model. The ut
k´1 can be estimated by techniques

1This work adopts a perfect sensor model for the purpose of simplicity,
which assumes that a non-empty measurement is returned if and only if the
target is inside the FOV and not occluded. However, it is worth noting that
the proposed approach can be easily extended to imperfect sensor models
that give false positive or false negative measurements.



such as displacement differentiation, Linear Quadratic Gaus-
sian Controller, etc., and is not the focus of this work.
Update. Use current measurements to update target PDF,

Kk “Pk|k´1C
T
k pCkPk|k´1C

T
k `Rsq´1, (5a)

ẑtk|k “ ẑtk|k´1 `µkKkpyk ´ fspẑtk|k´1, z
r
kqq, (5b)

Pk|k “Pk|k´1 ´µkKkCkPk|k´1, (5c)

where Ck “∇ztfspzt, zrkq|zt“ẑt
k|k´1

is the Jacobi matrix of
measurement model, and µk is the detection variable (DV)
determining whether the target is detected, calculated as

µk “

"

1, yk ‰∅
0, yk “∅ . (6)

D. MPC Formulation for Trajectory Planning

The trajectory planner is formulated as an MPC problem

min
ur

k:k`N´1

Jpbr
k`1:k`N ,b

t
k`1:k`N q (7a)

s.t. bt
k`i “gtpbt

k`i´1,b
r
k`i´1q, (7b)

br
k`i “grpbr

k`i´1,u
r
k`i´1q, (7c)

br
k`i PBr,bt

k`i PBt,ur
k`i´1 PU , (7d)

fopbr
k`i,Ojq ă 0, (7e)

j“ 1, 2, ¨ ¨ ¨ , No, i“ 1, ¨ ¨ ¨ , N,

where N stands for MPC planning horizon. The target belief
state bt

k “ rẑtk|k,Pk|ks encodes the probability distribution of
the target state. Due to the existence of process noise, the
robot state is stochastic in the predictive horizon. Therefore,
we define the robot belief state br

k “ rẑrk,Qks to encode
mean value ẑrk and covariance matrix Qk of robot state.
The sets Br, Bt and U are the feasible sets of robot belief
state, target belief state and robot control input, respectively.
The functions gr and gt denote belief prediction procedures,
which will be described in detail in the next section. The
objective function Eq. (7a) and the collision avoidance con-
straint Eq. (7e) will be further elaborated in Secs. III and IV.

III. BELIEF-SPACE PROBABILITY OF DETECTION-BASED
STATE PREDICTION

A. Probabilistic State Prediction in Predictive Horizon

We employ two different EKF-based approaches for the
state prediction of the robot and target, thus specifying
Eqs. (7b) and (7c). Note that the lack of observation needs
to be properly addressed, which differs from the estimation
process Eqs. (4a), (4b) and (5a) to (5c).

Robot state prediction. Like Eqs. (4a) and (4b), we use
the prediction step of EKF to predict the robot state in the
predictive horizon. Specifically, Eq. (7c) is specified as

ẑrk`i “ frpẑrk`i´1,u
r
k`i´1q, (8a)

Qk`i “Ar
k`i´1Qk`i´1pAr

k`i´1qT `Rr, (8b)

where Ar
k`i´1 “∇zr frpzr,ur

k`i´1q|zr“ẑr
k`i´1

is the Jacobi
matrix of the robot kinematic model.

Target state prediction. Within the planning horizon, the
target mean is simply propagated using its kinematics with
the same control input ut

k`i “ut
k´1, i“ 0, ¨ ¨ ¨ , N´1, and

the covariance Pk`i|k`i´1 is predicted by Eq. (4b). How-
ever, target visibility is uncertain in the predictive horizon,
making it difficult to predict DV and update the covariance
following Eqs. (5a) and (5c). To deal with this difficulty, we
propose the concept of BPOD to denote the probability that
the target is detected, defined as

γk “Prpyk ‰∅|br
k,b

t
k|k´1q, (9)

where bt
k|k´1 “ rẑtk|k´1,Pk|k´1s. Compared to traditional

PODs that are either determined by the ground truth of robot
and target positions [19] or only depend on the predictive
target belief under deterministic robot states [15, 16], BPOD
is conditioned on the belief states of both the robot and the
target, which provides a more precise measurement of visibil-
ity under stochastic system states. Next, we will incorporate
the BPOD into EKF and constitute the stochastic counterpart
of Eq. (5c) to tackle uncertain predictive visibility.

Recall that the DV is determined by the relative pose of
the robot and the target, and thus can be reformulated as

µk “Prpyk ‰∅|zrk, z
t
kq. (10)

Denote Ez|bp¨q as the expectation operator with respect to ztk
and zrk conditioned on bt

k|k´1 and br
k, we can adopt the total

probability rule (TPR) and derive γk “Ez|bpµkq. Combining
Eq. (10) and the EKF procedures, we can find that Pk|k

in Eq. (5c) is conditioned on zrk and ztk. Note that accurate
estimates of the robot and target states are not available in the
predictive horizon. Therefore, the posterior covariance P̃k|k

in predictive horizon only depends on the predictive robot
and target beliefs, and thus can be formulated as the condi-
tional expectation of Pk|k, i.e., P̃k|k “Ez|bpPk|kq according
to TPR. Following this idea, we propose a visibility-aware
covariance update scheme, which is formulated as follows:

P̃k|k “Ez|bpPk|kq (11a)

«Ez|bpPk|k´1 ´µkK̃kC̃kPk|k´1q (11b)

“Pk|k´1 ´Ez|bpµkqK̃kC̃kPk|k´1 (11c)

“Pk|k´1 ´γkK̃kC̃kPk|k´1, (11d)

where covariance Pk|k´1 and Pk|k are defined in Eqs. (4b)
and (5c), respectively, and C̃k, K̃k denote the approx-
imate measurement Jacobi matrix and Kalman gain, re-
spectively. To simplify the computation, we approximate
the measurement Jacobi matrix as being equal to the one
determined by the mean value of robot belief ẑrk, i.e.,
C̃k “∇ztfspzt, ẑrkq|zt“ẑt

k|k´1
, and calculate the Kalman gain

K̃k from Eq. (5a) by replacing Ck with C̃k, which yields
Eq. (11b). Eq. (11c) is derived by the independency of K̃k

and C̃k from ztk and zrk.
Eq. (11d) is a probabilistic extension of Eq. (5c) that

allows us to update the target covariance in Eq. (7b) using
only the predicted beliefs of the robot and target. Fig. 2
illustrate the prediction of both robot and target belief states.

B. Objective Functions

There are two mainstream choices of the objective function
for target tracking, i.e., to minimize target uncertainty [9, 16],



 

Fig. 2: Illustration of state prediction process Eqs. (7b) and (7c).
(a) Propagate robot and target prior distribution via Eqs. (4) and (8).
(b) Calculate BPOD. (c) Update target covariance using Eq. (11d).

or to maximize the predictive visibility of the target [15]. We
correspondingly formulate two objectives as

J1 “

N
ÿ

i“1

Hpbt
k`iq, J2 “ ´

N
ÿ

i“1

γk`i, (12)

where J1 is the cumulative entropy of target belief, specified
as J1 “ Ndt

2 plnp2πq`1q`
řN

i“1
1
2 ln |P̃k`i|k`i| with dt be-

ing the dimension of ztk, and J2 is the negation of cumulative
BPOD. These two objectives are theoretically proved to be
compatible [20], and both J1 and J2 are verified to perform
well in keeping the target visible and decreasing estimation
error in the simulation, as will be presented in Sec. V.

IV. SIGNED DISTANCE FUNCTION-BASED ONLINE
TRAJECTORY PLANNING

In order to solve the MPC problem Eq. (7), it is crucial
to efficiently compute BPOD and the collision constraint
Eq. (7e). A main contribution of this work is to represent and
compute the BPOD and collision risk in a unified manner that
significantly reduces the computational burden of solving the
MPC problem, which will be detailed in this section.

A. Unified Expression of Visibility and Collision Risk
Limited FOV and occlusion are two major factors that

influence visibility. Following this idea, we factorize the
BPOD into two types of probabilities as follows.

Target and FOV. We define the probability of the target
being within the FOV area as:

γtfk “Prpxt
k PVk|br

k,b
t
k|k´1q. (13)

LOS and Obstacle. Likewise, we express the probability
that the target is not occluded by obstacle i as:

γlo
k,i “PrpLk

č

Oi “∅|br
k,b

t
k|k´1q, (14)

where Lk ĂR2 is the line segment between xt
k and the

robot position xr
k PR2. Reasonably, we can assume that all

variables in tγtfk , γ
lo
k,1, ¨ ¨ ¨ , γlok,No

u are mutually independent.
Then the BPOD Eq. (9) can be factorized as

γk “ γtfk

No
ź

i“1

γlok,i. (15)

Algorithm 1: Calculation of PoSSDF
1 INPUT: two rigid bodies: A1pxq,A2pxq, x„N px̂,Σq,
2 SDF parameters p̂L1 , p̂

L
2 , n̂

3 OUTPUT: p“PrpsdpA1pxq,A2pxqq ď 0q

4 pipxq ÐRipxqp̂Li `pc
i pxq, i“ 1, 2

5 sdpxq Ð n̂T
pp1pxq´p2pxqq

6 sdLpxq Ð sdpx̂q`∇xsdpxq|x“x̂px´ x̂q

7 pÐ Calculate PrpsdLpxq ď 0q

To avoid overly conservative trajectory while ensuring safety,
we define chance-constrained [21] collision avoidance con-
ditions that bound the collision risk below a user-defined
threshold δs PR. The probability of collision between the
robot and obstacle i at time k is defined as:

γrok,i “Prpxr
k POi|b

r
k,b

t
k|k´1q. (16)

Eq. (7e) is then specified as the chance constraints, i.e.,

γrok`i,j ă δsk`i,j . (17)

In the next subsection, a computationally efficient algo-
rithm is designed to calculate γtf , γlo and γro. For simplic-
ity, we define the set Γk “ tγtfk , γ

lo
k,i, γ

ro
k,i, i“ 1, ¨ ¨ ¨ , Nou.

B. Approximating Γk with Linearized SDF

The SDF quantifies the distance between two shapes.
Specifically, the SDF of two sets A,B ĂR2 is formulated
as the minimum translation distance required to separate or
intersect each other, i.e.,

sd pA,Bq “

"

inf t}v} | pv`Aq
Ş

B ‰∅u ,A
Ş

B “∅
´ inf t}v} | pv`Aq

Ş

B “∅u ,A
Ş

B ‰∅ ,

where v PR2 is the translation vector. Using SDF, we can
equivalently reformulate Eqs. (13), (14) and (16) as

γtfk “Prpsdpxt
k,Vkq ď 0|br

k,b
t
k|k´1q, (18a)

γlok,i “PrpsdpLk,Oiq ě 0|br
k,b

t
k|k´1q, (18b)

γrok,i “Prpsdpxr
k,Oiq ď 0|br

k,b
t
k|k´1q. (18c)

Note that Eqs. (18a) to (18c) are all PoSSDFs because
xt
k,x

r
k,Lk and Vk are all random variables given robot and

target beliefs. These probabilities can be evaluated using
Monte-Carlo simulation, but at the cost of heavy computa-
tional burden. Inspired by [22], we propose a computation-
ally efficient paradigm to evaluate PoSSDF using a linearized
SDF expression, as described in Alg. 1.

The inputs of Alg. 1 include two rigid bodies A1,A2 Ă

R2, whose poses are determined by an arbitrary random
Gaussian variable x with dimension dx. This algorithm
also needs to precalculate the signed distance d̂ PR be-
tween A1px̂q and A2px̂q, along with the closest points
from each set, p̂1 PA1px̂q, p̂2 PA2px̂q, as illustrated in
Fig. 3(a). This operation can be efficiently carried out by
using Gilbert–Johnson–Keerthi (GJK) algorithm [23] and
Expanding Polytope Algorithm (EPA) [24]. Then we ob-
tain the SDF parameters including the contact normal n̂“

sgnpd̂q ¨ pp̂1 ´ p̂2q{}p̂1 ´ p̂2}, and the local coordinates of
p̂1 and p̂2 relative to A1px̂q and A2px̂q respectively, noted
as p̂L1 and p̂L2 . Line 4 provides an analytical approximation



 

Fig. 3: Illustration of SDF approximation in Alg. 1. The blue
segment represents the true SDF value of two sets A1pxq and
A2pxq, while the approximate SDF is calculated by projecting
p1pxq´p2pxq (the red dashed segment) to n̂ (the purple vector).
(a) A general case. (b) Application of Alg. 1 to calculate γlo with
the dashed ellipses denoting the uncertainties of robot and target.

of the closest points p1pxq and p2pxq in the world frame.
Here we assume that the local coordinates of p1pxq and
p2pxq, relative to A1pxq and A2pxq respectively, are fixed
and equal to p̂L1 and p̂L2 . The approximate closest point pipxq

in the world frame can then be obtained by using Ripxq, the
rotation matrix of Aipxq, and pc

i pxq, the origin of the local
coordinate system attached to Aipxq. In Line 5, the SDF
between A1pxq and A2pxq is approximated by projecting the
distance between p1pxq and p2pxq onto the contact normal
n̂. Fig. 3(a) illustrates the SDF approximation in Lines 4
and 5. In Lines 6 and 7, we linearize the SDF around
the Gaussian mean and analytically calculate the PoSSDF
using the fact that the probability of a linear inequality for a
Gaussian variable can be explicitly expressed as follows [25],

PrpaT ¨xď bq “
1

2
p1´erfp

aT ¨ x̂´b
?
2aTΣa

qq, (19)

where erfp¨q represents the Gauss error function, and a P

Rdx , b PR form the linear constraint of x.
Alg. 1 provides a general procedure to calculate PoSSDF.

Denote x“

”

zrk
T , ztk

T
ıT

, we can make the following ad-
justment and apply Alg. 1 to efficiently calculate Γk. To
take the variable length of the LOS Lkpxq into account
when calculating γlo, we precalculate the separative ratio
λ̂ of Lkpx̂q before carrying out Alg. 1, which is formulated
as λ̂“ }p̂1 ´ x̂t

k}{}x̂r
k ´ x̂t

k}, where p̂1 is the nearest point
on Lkpx̂q. We then replace the SDF parameter p̂L1 with λ̂
and reformulate the approximated nearest point (Line 4) on
Lkpxq in the world frame as

p1pxq “ λ̂xr
kpxq`p1´ λ̂qxt

kpxq. (20)

This adjustment for calculating γlo is illustrated in Fig. 3(b).
Note that Eq. (17) is not violated even though γro is

approximated with Alg. 1. This is because in Alg. 1, the
obstacle is expanded to a half space with the closest point
on its boundary and n̂ being its normal vector, which over-
estimates γro thus ensuring Eq. (17) to be strictly enforced.

C. Sequential Convex Optimization

After being specified in Secs. IV-A and IV-B, problem
Eq. (7) can be solved using the SCP algorithm, where the

Algorithm 2: Trajectory Planning in SCP Framework
with Two-Stage Strategy for Efficient SDF Calcula-
tion

1 PARAMETERS:
2 η : initial penalty coefficient
3 d : initial trust region size
4 β : increase ratio of the penalty coefficient
5 τc, τp, τf : convergence tolerances
6 OUTPUT: x˚

“ur
k:k`N´1 : the optimal solution

7 x0, C0 Ð Initialize the solution and SDF parameter set
8 while TRUE do
9 while TRUE do

10 ∇Jx Ð Get the gradient of Jm on x0 using C0

11 J̃px, η, C0q Ð Jmpx0, η, C0q`∇Jx ¨ px´x0q

12 x˚
Ð argminxJ̃px, η, C0q subject to trust region,

linear constraints, and semidefinite constraints of
covariance matrices.

13 C˚
Ð Update SDF parameter set from x˚

14 dÐ Update trust region size by improvement ratio
Jmpx0,η,C0q´Jmpx˚,η,C˚q

Jmpx0,η,C0q´J̃px˚,η,C0q

15 If }x˚
´x0} ď τc or |∇Jx ¨ px˚

´x0q| ď τf break
16 x0 Ðx˚, C0 Ð C˚ If trust region is expanded
17 end
18 If

ř

i |gni px˚, C˚
q|

`
`

ř

j |hn
j px˚, C˚

q| ď τp break
19 η Ðβ ¨η
20 end

nonlinear constraints are converted into l1 penalty functions,

Jm “ J`ηp
ÿ

i

|gni |` `
ÿ

i

|hni |q. (21)

Here J denotes the objective function Eq. (7a), and gni , hni
represent the nonlinear inequality and equality constraints,
respectively. Here η is the penalty coefficient and |x|` “

maxpx, 0q. The SCP consists of two loops: The outer loop
progressively increases η to drive the nonlinear constraint
violation to zero, while in the inner loop, the trust region
method is implemented to minimize the new objective func-
tion Jm. Interested readers can refer to [22] for details.

Directly adopting this framework turns out to be slow due
to the frequent calls of GJK algorithms and EPA when calcu-
lating the gradient of Eq. (21). To overcome this limitation,
we use a fixed SDF parameter set that encodes all the SDF
parameters in the MPC horizon to calculate Γk`1:k`N in the
gradient, and update the SDF parameter set after obtaining a
new solution. This two-stage strategy significantly speeds up
the planner with minor accuracy loss, and is further described
in the trajectory planning framework presented in Alg. 2.

The variable x0 is initialized with zero control inputs
at the first step, and is extrapolated from its value at the
previous step for all subsequent steps. This is followed by
precalculating an SDF parameter set C0 at the mean value
of the initial robot and target beliefs, which is propagated
by x0 (Line 7). Using a fixed C0, we can fastly obtain
the gradient (Line 10) and linearize the objective function
(Line 11). After solving the linearized problem, the SDF
parameter set is updated (Line 13) and utilized to update the
trust region size (Line 14). The inner loop ends when the
improvement is small (Line 15). The outer loop checks the
terminal condition for the solution x˚ (Line 18) and increases
the penalty coefficient η (Line 19).



V. SIMULATIONS

The proposed method is validated through multiple sim-
ulations in MATLAB using a desktop (12th Intel(R) i7
CPU@2.10GHz), and the MOSEK solver is adopted to
optimize the trajectory according to the SCP routine. The
robot takes a unicycle model, where the robot state zrk “

rxr
k
T , θrk, v

r
ksT PR4 contains position xr

k PR2, orientation
θrk P p´π, πs, and velocity vrk PR`, and the robot control
input ur

k “ rωr
k, a

r
ksT PR2 is composed of angular velocity

ωr
k PR and acceleration ark PR. The robot dynamics follow

the following motion model:

frpzrk,u
r
kq “ zrk `rvrk cos θ

r
k, v

r
k sin θ

r
k, ω

r
k, a

r
ksT ¨∆t, (22)

with ∆t“ 0.5s representing our sampling interval. We set
the range of robot acceleration (m{s2) as ´4ď ark ď 2,
angular velocity (rad{s) as ´π{3ďωr

k ďπ{3 and speed
limit as 4m{s. The motion noise is set as Rr “ 10´3 ¨

diagp4, 4, 0.4, 0.4q. The robot’s sensor FOV is modeled as
an annular sector, with minimal detection distance r1 “

2m, maximal distance r2 “ 10m and the sensing angle ψs

is 2π{3. We shrink the FOV to its convex subset when
calculating Eq. (13) to fit the inputs of GJK algorithm and
EPA. The predictive horizon is set as N “ 4. A 60mˆ50m
map with cluttered polygon obstacles is designed in our sim-
ulation tests (Fig. 4(a)). The proposed method only considers
obstacles near the LOS, which we note as “valid obstacles”.
The initial state of the robot is designated as r32, 7, 34π, 0sT .

To quantitatively evaluate the performance of our method,
several metrics are computed for a tracking simulation with
a total step T and target trajectory tx̃t

k, k“ 1, ¨ ¨ ¨ , T u, in-
cluding computing time tcal, loss rate rlos that denotes the
percentage of time the robot cannot see the target, and the
estimation error eest that is defined as the mean absolute
error (MAE) of the target’s estimated position, i.e., eest “
1
T

řT
k“1 }x̂t

k ´ x̃t
k}. Besides, we claim a tracking failure if

the robot collides with an obstacle or loses sight of the target
in 15 consecutive steps, and we define the success rate rsuc
over multiple tracking experiments as the proportion that the
robot finishes the tracking task without failure.

A. Performance Analysis in a Challenging Scenario

We design a target trajectory with several sharp turns near
obstacles to evaluate the performance of the tracker under
challenging scenarios, as shown in Fig. 4(b). We adopt a
single integrator to describe the target motion model, which
is formulated as ztk`1 “ ztk `ut

k ¨∆t, where the target state
consists of its position, i.e., ztk “xt

k, and target control ut
k P

R2 is known to the robot. Covariance Rt is set as 0.01I2,
where I2 denotes the 2ˆ2 identity matrix. A range-bearing
sensor model is adopted to acquire the distance and bearing
angle of the target relative to the robot, which is written as:

fspztk, z
r
kq “ r}xt

k ´xr
k},=pxt

k ´xr
kq´θrksT . (23)

The covariance Rs is set as diagp0.3, 0.05q. The target
position is initialized at r28, 9sT . We use cumulative entropy
J1 in Eq. (12) as our objective function.

 

Fig. 4: Visibility-aware tracking of the target with linear motion
model. The colorful background represents the target’s PDF, and
the color bar shows the colormap of probability. The “valid obs”
denotes the valid obstacles. (a) Initial simulation scenario. (b) Entire
tracking trajectory. (c) and (d) highlight a sharp turn of the target
and display the robot’s trajectory with high visibility.

 

Fig. 5: Trajectory performance. (a) History of signed distances.
(b) Target entropy and estimation error. (c) The BPOD value and
the approximation error of the BPOD compared to the ground truth.

Fig. 4 shows the tracking process. The target uncertainty
is initialized to be very large (Fig. 4(a)). As the tracking
progresses, the robot plans a visibility-aware trajectory to
track the target (Fig. 4(b)). Specifically, when the target
takes a sharp turn near an obstacle, the robot moves away
from the obstacle in advance to reduce the likelihood of
target loss (Fig. 4(c) and (d)). Note that this roundabout
path frequently appears in the tracking process (highlighted
by yellow ellipses in Fig. 4(b)) and is a characteristic of
visibility-aware trajectories.

Fig. 5 displays the performance data. The robot can
maintain the visibility of the target throughout the simulation
without any target loss. To see this, Fig. 5(a) shows the purple
curve that indicates the target is inside our convexified FOV
most of the time, and the blue curve that indicates LOS
and obstacles never intersect. Due to uninterrupted measure-
ments, target entropy rapidly converges and the estimation
error is kept small (Fig. 5(b)). We also record the BPOD
value and evaluate the accuracy of the BPOD approximation
against the Monte-Carlo simulation as the ground truth, as
shown in Fig. 5(c). The subfigure shows that the BPOD is



kept near 1 most of the time, and simulation results also
demonstrate that we can calculate one BPOD within 1ms
with an MAE of 2.5ˆ10´3.

The experiment is conducted 30 times for quantitative
performance evaluation. The robot completes the tracking
task in 28 cases without failure, and the results show that
the robot can track the target with low mean estimation error
ēest “ 0.308m, low mean loss rate r̄los “ 4.1% with the mean
computing time t̄cal “ 0.176s{step.

B. Evaluation with Stochastic Target Trajectories

We benchmark our method against a representative
visibility-aware trajectory planning method based on [11].
To ensure a fair comparison, both methods utilize an MPC
framework with identical robot kinematics constraints and
SCP solver. The main distinction lies in that we adapt the
deterministic visibility cost and the collision cost in [11] to
the baseline MPC framework as the objective function.

The target takes a unicycle model [26] with the target state
represented as ztk “ rxt

k
T
, θtksT , where θtk stands for target

orientation. In addition, the target controls ut
k “ rvtk, ω

t
ksT

that encode the speed vtk PR and angular velocity ωt
k PR

remain unknown to the robot. To estimate and predict target
belief according to the EKF fashion, the robot estimates
ut
k by differentiating target displacement and rotation. We

choose the cumulated BPOD J2 in Eq. (12) as the objective
function. Besides, we adopt a camera sensor model to detect
target distance, bearing angle and orientation:

fspztk, z
r
kq “ r}xt

k ´xr
k},=pxt

k ´xr
kq´θrk, θ

t
k ´θrksT . (24)

We test both our algorithm and the baseline algorithm
under different scales of measurement noise. Specifically,
the measurement noise is set as 10´2β ¨diagp1, 0.5, 1q, with
β P t0.5, 2, 5u corresponding to different uncertainty levels.
For each level, 50 randomly generated target trajectories
are tested to compare the tracking performance of the two
planners. The target speed limit is set as 3m{s and each
trajectory has 400 time steps. Target motion noise is set as
0.5I3 to simulate stochastic target movements.

A pair of comparative tracking experiments is presented in
Fig. 6 to highlight the negative impact of system uncertainty
on a deterministic trajectory planner and to showcase the
robustness of our approach. Simulation metrics comparisons
are depicted in Fig. 7. The results show that in low-
noise scenarios, both planners provide precise estimations
for target states and effectively keep the target visible.
However, in the face of higher system uncertainty, the
proposed planner consistently maintains low estimation error,
high visible rate, and high success rates when tracking a
target, while the performance of the baseline deteriorates
significantly. It is important to note that although our method
requires additional time for trajectory planning due to extra
computational cost for considering the system uncertainty,
the overall duration remains below 0.1 seconds, which is
sufficient for real-time planning. The overall metrics show
that our method achieves a better balance between efficiency
and effectiveness in the face of high uncertainty.

Fig. 6: Trajectory comparisons between baseline method (a)
and ours (b). In the face of stochastic target trajectories and
high system noise (β “ 5), the baseline method generates a more
tortuous trajectory and finally loses the target due to inaccurate
estimations. In contrast, our method generates a smoother trajectory
and succeeds in completing the tracking task.

 

Fig. 7: Box graphs of the performance metrics under different
uncertainty levels β. The estimation error, loss time and calculation
time are all averaged over 50 tracking experiments.

VI. REAL-WORLD EXPERIMENTS

The proposed approach has been tested by using a Wheel-
tec ground robot equipped with an ORBBEC Femto W
camera to keep track of a moving Turtlebot3, on which
three interlinked Apriltags are affixed. The speed limit of
the tracker and the target are 0.4m{s and 0.31m{s, re-
spectively. The onboard processor (NVIDIA Jetson TX1) on
the Wheeltec robot calculates the distance, bearing angle,
and orientation of the detected Apriltag from the camera
images and transmits the messages through ROS to a laptop
(11th Intel(R) i7 CPU@2.30GHz) that performs the plan-
ning algorithm. The parameters of the sensor model are
calibrated as r1 “ 0.3m, r2 “ 1.5m, θ“ 100˝, and Rs “

diagp0.069, 8.3ˆ10´4, 0.0055q. The covariance of robot
motion noise is set as Rr “ diagp0.08I2, 0.055I2q to han-
dle model discretization error and mechanical error. Other
parameters are kept the same as Sec. V-B except for the
distance parameter that has been scaled down by a factor
of 10. The ground truth of the robot and target poses are
obtained by a Vicon motion-capture system.

We conduct three tracking experiments by remotely con-
trolling the target to randomly traverse an indoor map with
cluttered obstacles (Fig. 8(a)), and the duration of all three
experiments exceed 2 minutes. For each experiment, we
record the total planning steps T , estimation error eest,



 

Fig. 8: Real-world target tracking. (a) Map configuration and one
tracking frame. (b) Simulation scene corresponding to (a) and the
trajectories of the target and the robot.

TABLE I: Real-World Experiment Results
T eest(m) tcal(s/step) dmin(m)

1 538 0.072 0.087 0.247
2 497 0.078 0.089 0.210
3 471 0.071 0.090 0.232

calculation time tcal and minimum distance to obstacles
dmin, as shown in Tab. I. Both Fig. 8(b) and Tab. I show
that our planner can generate safe trajectories for the robot
to track a moving target while reducing target uncertainty in
real-world scenarios.

VII. CONCLUSION

We propose a target-tracking approach that systematically
accounts for the limited FOV, obstacle occlusion, and state
uncertainty. In particular, the concept of BPOD is proposed
and incorporated into the EKF framework to predict target
uncertainty in systems subject to measurement noise and
imperfect motion models. We subsequently develop an SDF-
based method to efficiently calculate the BPOD and collision
risk to solve the trajectory optimization problem in real time.
Both simulations and real-world experiments validate the
effectiveness and efficiency of our approach.

Future work includes mainly two aspects. First, we will
investigate the properties and applications of BPOD in non-
Gaussian belief space planning. Second, we will extend the
proposed method to unknown and dynamic environments.
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